@@ -6,6 +6,8 @@ Authors: Scott Morrison, Justus Springer
6
6
import algebraic_geometry.locally_ringed_space
7
7
import algebraic_geometry.structure_sheaf
8
8
import data.equiv.transfer_instance
9
+ import topology.sheaves.sheaf_condition.sites
10
+ import topology.sheaves.functors
9
11
10
12
/-!
11
13
# $Spec$ as a functor to locally ringed spaces.
@@ -31,7 +33,6 @@ natural transformation in `Spec_Γ_naturality`, and realized as a natural isomor
31
33
32
34
TODO: provide the unit, and prove the triangle identities.
33
35
34
-
35
36
-/
36
37
37
38
noncomputable theory
@@ -132,6 +133,20 @@ lemma Spec.to_PresheafedSpace_obj_op (R : CommRing) :
132
133
lemma Spec.to_PresheafedSpace_map_op (R S : CommRing) (f : R ⟶ S) :
133
134
Spec.to_PresheafedSpace.map f.op = Spec.SheafedSpace_map f := rfl
134
135
136
+ lemma Spec.basic_open_hom_ext {X : RingedSpace} {R : CommRing} {α β : X ⟶ Spec.SheafedSpace_obj R}
137
+ (w : α.base = β.base) (h : ∀ r : R, let U := prime_spectrum.basic_open r in
138
+ (to_open R U ≫ α.c.app (op U)) ≫ X.presheaf.map (eq_to_hom (by rw w)) =
139
+ to_open R U ≫ β.c.app (op U)) : α = β :=
140
+ begin
141
+ ext1,
142
+ { apply ((Top.sheaf.pushforward β.base).obj X.sheaf).hom_ext _
143
+ prime_spectrum.is_basis_basic_opens,
144
+ intro r,
145
+ apply (structure_sheaf.to_basic_open_epi R r).1 ,
146
+ simpa using h r },
147
+ exact w,
148
+ end
149
+
135
150
/--
136
151
The spectrum of a commutative ring, as a `LocallyRingedSpace`.
137
152
-/
@@ -209,7 +224,7 @@ Spec, as a contravariant functor from commutative rings to locally ringed spaces
209
224
section Spec_Γ
210
225
open algebraic_geometry.LocallyRingedSpace
211
226
212
- /-- The morphism `R ⟶ Γ(Spec R)` given by `algebraic_geometry.structure_sheaf.to_open`. -/
227
+ /-- The counit morphism `R ⟶ Γ(Spec R)` given by `algebraic_geometry.structure_sheaf.to_open`. -/
213
228
@[simps] def to_Spec_Γ (R : CommRing) : R ⟶ Γ.obj (op (Spec.to_LocallyRingedSpace.obj (op R))) :=
214
229
structure_sheaf.to_open R ⊤
215
230
@@ -220,7 +235,7 @@ lemma Spec_Γ_naturality {R S : CommRing} (f : R ⟶ S) :
220
235
f ≫ to_Spec_Γ S = to_Spec_Γ R ≫ Γ.map (Spec.to_LocallyRingedSpace.map f.op).op :=
221
236
by { ext, symmetry, apply localization.local_ring_hom_to_map }
222
237
223
- /-- The counit of the adjunction `Γ ⊣ Spec` is an isomorphism. -/
238
+ /-- The counit (`Spec_Γ_identity.inv.op`) of the adjunction `Γ ⊣ Spec` is an isomorphism. -/
224
239
@[simps] def Spec_Γ_identity : Spec.to_LocallyRingedSpace.right_op ⋙ Γ ≅ 𝟭 _ :=
225
240
iso.symm $ nat_iso.of_components (λ R, as_iso (to_Spec_Γ R) : _) (λ _ _, Spec_Γ_naturality)
226
241
0 commit comments