Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0420dd8

Browse files
committed
chore(measure_theory/measurable_space_def): make measurable_space arguments implicit (#13832)
1 parent 26310e7 commit 0420dd8

File tree

3 files changed

+16
-17
lines changed

3 files changed

+16
-17
lines changed

src/measure_theory/measurable_space.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -484,11 +484,11 @@ m₁.comap prod.fst ⊔ m₂.comap prod.snd
484484
instance {α β} [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) :=
485485
m₁.prod m₂
486486

487-
@[measurability] lemma measurable_fst [measurable_space α] [measurable_space β] :
487+
@[measurability] lemma measurable_fst {ma : measurable_space α} {mb : measurable_space β} :
488488
measurable (prod.fst : α × β → α) :=
489489
measurable.of_comap_le le_sup_left
490490

491-
@[measurability] lemma measurable_snd [measurable_space α] [measurable_space β] :
491+
@[measurability] lemma measurable_snd {ma : measurable_space α} {mb : measurable_space β} :
492492
measurable (prod.snd : α × β → β) :=
493493
measurable.of_comap_le le_sup_right
494494

@@ -561,8 +561,8 @@ lemma measurable_set_prod_of_nonempty {s : set α} {t : set β} (h : (s ×ˢ t :
561561
begin
562562
rcases h with ⟨⟨x, y⟩, hx, hy⟩,
563563
refine ⟨λ hst, _, λ h, h.1.prod h.2⟩,
564-
have : measurable_set ((λ x, (x, y)) ⁻¹' s ×ˢ t) := measurable_id.prod_mk measurable_const hst,
565-
have : measurable_set (prod.mk x ⁻¹' s ×ˢ t) := measurable_const.prod_mk measurable_id hst,
564+
have : measurable_set ((λ x, (x, y)) ⁻¹' s ×ˢ t) := measurable_prod_mk_right hst,
565+
have : measurable_set (prod.mk x ⁻¹' s ×ˢ t) := measurable_prod_mk_left hst,
566566
simp * at *
567567
end
568568

src/measure_theory/measurable_space_def.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -413,21 +413,21 @@ def measurable [measurable_space α] [measurable_space β] (f : α → β) : Pro
413413

414414
localized "notation `measurable[` m `]` := @measurable _ _ m _" in measure_theory
415415

416-
variables [measurable_space α] [measurable_space β] [measurable_space γ]
416+
lemma measurable_id {ma : measurable_space α} : measurable (@id α) := λ t, id
417417

418-
lemma measurable_id : measurable (@id α) := λ t, id
418+
lemma measurable_id' {ma : measurable_space α} : measurable (λ a : α, a) := measurable_id
419419

420-
lemma measurable_id' : measurable (λ a : α, a) := measurable_id
421-
422-
lemma measurable.comp {α β γ} {mα : measurable_space α} {mβ : measurable_space β}
420+
lemma measurable.comp {mα : measurable_space α} {mβ : measurable_space β}
423421
{mγ : measurable_space γ} {g : β → γ} {f : α → β} (hg : measurable g) (hf : measurable f) :
424422
measurable (g ∘ f) :=
425423
λ t ht, hf (hg ht)
426424

427-
@[simp] lemma measurable_const {a : α} : measurable (λ b : β, a) :=
425+
@[simp] lemma measurable_const {ma : measurable_space α} {mb : measurable_space β} {a : α} :
426+
measurable (λ b : β, a) :=
428427
assume s hs, measurable_set.const (a ∈ s)
429428

430-
lemma measurable.le {α} {m m0 : measurable_space α} (hm : m ≤ m0) {f : α → β}
429+
lemma measurable.le {α} {m m0 : measurable_space α} {mb : measurable_space β} (hm : m ≤ m0)
430+
{f : α → β}
431431
(hf : measurable[m] f) : measurable[m0] f :=
432432
λ s hs, hm _ (hf hs)
433433

src/probability/stopping.lean

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -267,7 +267,7 @@ begin
267267
intro i,
268268
have : u i = (λ p : set.Iic i × α, u p.1 p.2) ∘ (λ x, (⟨i, set.mem_Iic.mpr le_rfl⟩, x)) := rfl,
269269
rw this,
270-
exact (h i).comp_measurable ((@measurable_const _ _ _ (f i) _).prod_mk (@measurable_id _ (f i))),
270+
exact (h i).comp_measurable measurable_prod_mk_left,
271271
end
272272

273273
protected lemma comp {t : ι → α → ι} [topological_space ι] [borel_space ι] [metrizable_space ι]
@@ -280,7 +280,7 @@ begin
280280
= (λ p : ↥(set.Iic i) × α, u (p.fst : ι) p.snd) ∘ (λ p : ↥(set.Iic i) × α,
281281
(⟨t (p.fst : ι) p.snd, set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd)) := rfl,
282282
rw this,
283-
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk (@measurable_snd _ _ _ (f i))),
283+
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd),
284284
end
285285

286286
section arithmetic
@@ -715,7 +715,7 @@ begin
715715
rw h_set_eq,
716716
suffices h_meas : @measurable _ _ (m_set s) (f i) (λ x : s, (x : set.Iic i × α).snd),
717717
from h_meas (f.mono (min_le_left _ _) _ (hτ.measurable_set_le (min i j))),
718-
exact (@measurable_snd _ _ _ (f i)).comp (@measurable_subtype_coe _ m_prod _), },
718+
exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _), },
719719
{ suffices h_min_eq_left : (λ x : sᶜ, min ↑((x : set.Iic i × α).fst) (τ (x : set.Iic i × α).snd))
720720
= λ x : sᶜ, ↑((x : set.Iic i × α).fst),
721721
{ rw [set.restrict, h_min_eq_left],
@@ -798,10 +798,9 @@ begin
798798
{ suffices h_meas : measurable[measurable_space.prod _ (f i)]
799799
(λ a : ↥(set.Iic i) × α, (a.fst : ℕ)),
800800
from h_meas (measurable_set_singleton j),
801-
exact (@measurable_fst _ α _ (f i)).subtype_coe, },
801+
exact measurable_fst.subtype_coe, },
802802
{ have h_le : j ≤ i, from finset.mem_range_succ_iff.mp hj,
803-
exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable
804-
(@measurable_snd _ α _ (f i)), },
803+
exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable measurable_snd, },
805804
{ exact strongly_measurable_const, },
806805
end
807806

0 commit comments

Comments
 (0)