@@ -357,23 +357,46 @@ lemma l_supr_u [complete_lattice α] [complete_lattice β] (gi : galois_insertio
357
357
calc l (⨆ (i : ι), u (f i)) = ⨆ (i : ι), l (u (f i)) : gi.gc.l_supr
358
358
... = ⨆ (i : ι), f i : congr_arg _ $ funext $ λ i, gi.l_u_eq (f i)
359
359
360
+ lemma l_bsupr_u [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
361
+ {ι : Sort x} {p : ι → Prop } (f : Π i (hi : p i), β) :
362
+ l (⨆ i hi, u (f i hi)) = ⨆ i hi, f i hi :=
363
+ by simp only [supr_subtype', gi.l_supr_u]
364
+
365
+ lemma l_Sup_u_image [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
366
+ (s : set β) : l (Sup (u '' s)) = Sup s :=
367
+ by rw [Sup_image, gi.l_bsupr_u, Sup_eq_supr]
368
+
360
369
lemma l_inf_u [semilattice_inf α] [semilattice_inf β] (gi : galois_insertion l u) (a b : β) :
361
370
l (u a ⊓ u b) = a ⊓ b :=
362
371
calc l (u a ⊓ u b) = l (u (a ⊓ b)) : congr_arg l gi.gc.u_inf.symm
363
372
... = a ⊓ b : by simp only [gi.l_u_eq]
364
373
365
374
lemma l_infi_u [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
366
375
{ι : Sort x} (f : ι → β) :
367
- l (⨅ i, u (f i)) = ⨅ i, ( f i) :=
376
+ l (⨅ i, u (f i)) = ⨅ i, f i :=
368
377
calc l (⨅ (i : ι), u (f i)) = l (u (⨅ (i : ι), (f i))) : congr_arg l gi.gc.u_infi.symm
369
378
... = ⨅ (i : ι), f i : gi.l_u_eq _
370
379
380
+ lemma l_binfi_u [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
381
+ {ι : Sort x} {p : ι → Prop } (f : Π i (hi : p i), β) :
382
+ l (⨅ i hi, u (f i hi)) = ⨅ i hi, f i hi :=
383
+ by simp only [infi_subtype', gi.l_infi_u]
384
+
385
+ lemma l_Inf_u_image [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
386
+ (s : set β) : l (Inf (u '' s)) = Inf s :=
387
+ by rw [Inf_image, gi.l_binfi_u, Inf_eq_infi]
388
+
371
389
lemma l_infi_of_ul_eq_self [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
372
390
{ι : Sort x} (f : ι → α) (hf : ∀ i, u (l (f i)) = f i) :
373
- l (⨅ i, ( f i) ) = ⨅ i, l (f i) :=
391
+ l (⨅ i, f i) = ⨅ i, l (f i) :=
374
392
calc l (⨅ i, (f i)) = l ⨅ (i : ι), (u (l (f i))) : by simp [hf]
375
393
... = ⨅ i, l (f i) : gi.l_infi_u _
376
394
395
+ lemma l_binfi_of_ul_eq_self [complete_lattice α] [complete_lattice β] (gi : galois_insertion l u)
396
+ {ι : Sort x} {p : ι → Prop } (f : Π i (hi : p i), α) (hf : ∀ i hi, u (l (f i hi)) = f i hi) :
397
+ l (⨅ i hi, f i hi) = ⨅ i hi, l (f i hi) :=
398
+ by { rw [infi_subtype', infi_subtype'], exact gi.l_infi_of_ul_eq_self _ (λ _, hf _ _) }
399
+
377
400
lemma u_le_u_iff [preorder α] [preorder β] (gi : galois_insertion l u) {a b} :
378
401
u a ≤ u b ↔ a ≤ b :=
379
402
⟨λ h, (gi.le_l_u _).trans (gi.gc.l_le h),
@@ -537,6 +560,10 @@ lemma u_infi_l [complete_lattice α] [complete_lattice β] (gi : galois_coinsert
537
560
u (⨅ i, l (f i)) = ⨅ i, (f i) :=
538
561
gi.dual.l_supr_u _
539
562
563
+ lemma u_Inf_l_image [complete_lattice α] [complete_lattice β] (gi : galois_coinsertion l u)
564
+ (s : set α) : u (Inf (l '' s)) = Inf s :=
565
+ gi.dual.l_Sup_u_image _
566
+
540
567
lemma u_sup_l [semilattice_sup α] [semilattice_sup β] (gi : galois_coinsertion l u) (a b : α) :
541
568
u (l a ⊔ l b) = a ⊔ b :=
542
569
gi.dual.l_inf_u _ _
@@ -546,11 +573,25 @@ lemma u_supr_l [complete_lattice α] [complete_lattice β] (gi : galois_coinsert
546
573
u (⨆ i, l (f i)) = ⨆ i, (f i) :=
547
574
gi.dual.l_infi_u _
548
575
576
+ lemma u_bsupr_l [complete_lattice α] [complete_lattice β] (gi : galois_coinsertion l u)
577
+ {ι : Sort x} {p : ι → Prop } (f : Π i (hi : p i), α) :
578
+ u (⨆ i hi, l (f i hi)) = ⨆ i hi, f i hi :=
579
+ gi.dual.l_binfi_u _
580
+
581
+ lemma u_Sup_l_image [complete_lattice α] [complete_lattice β] (gi : galois_coinsertion l u)
582
+ (s : set α) : u (Sup (l '' s)) = Sup s :=
583
+ gi.dual.l_Inf_u_image _
584
+
549
585
lemma u_supr_of_lu_eq_self [complete_lattice α] [complete_lattice β] (gi : galois_coinsertion l u)
550
586
{ι : Sort x} (f : ι → β) (hf : ∀ i, l (u (f i)) = f i) :
551
587
u (⨆ i, (f i)) = ⨆ i, u (f i) :=
552
588
gi.dual.l_infi_of_ul_eq_self _ hf
553
589
590
+ lemma u_bsupr_of_lu_eq_self [complete_lattice α] [complete_lattice β] (gi : galois_coinsertion l u)
591
+ {ι : Sort x} {p : ι → Prop } (f : Π i (hi : p i), β) (hf : ∀ i hi, l (u (f i hi)) = f i hi) :
592
+ u (⨆ i hi, f i hi) = ⨆ i hi, u (f i hi) :=
593
+ gi.dual.l_binfi_of_ul_eq_self _ hf
594
+
554
595
lemma l_le_l_iff [preorder α] [preorder β] (gi : galois_coinsertion l u) {a b} :
555
596
l a ≤ l b ↔ a ≤ b :=
556
597
gi.dual.u_le_u_iff
0 commit comments