|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Fox Thomson. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Fox Thomson |
| 5 | +-/ |
| 6 | + |
| 7 | +import computability.NFA |
| 8 | + |
| 9 | +/-! |
| 10 | +# Epsilon Nondeterministic Finite Automata |
| 11 | +This file contains the definition of an epsilon Nondeterministic Finite Automaton (`ε_NFA`), a state |
| 12 | +machine which determines whether a string (implemented as a list over an arbitrary alphabet) is in a |
| 13 | +regular set by evaluating the string over every possible path, also having access to ε-transitons, |
| 14 | +which can be followed without reading a character. |
| 15 | +Since this definition allows for automata with infinite states, a `fintype` instance must be |
| 16 | +supplied for true `ε_NFA`'s. |
| 17 | +-/ |
| 18 | + |
| 19 | +universes u v |
| 20 | + |
| 21 | +/-- An `ε_NFA` is a set of states (`σ`), a transition function from state to state labelled by the |
| 22 | + alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`). |
| 23 | + Note the transition function sends a state to a `set` of states and can make ε-transitions by |
| 24 | + inputing `none`. |
| 25 | + Since this definition allows for Automata with infinite states, a `fintype` instance must be |
| 26 | + supplied for true `ε_NFA`'s.-/ |
| 27 | +structure ε_NFA (α : Type u) (σ : Type v) := |
| 28 | +(step : σ → option α → set σ) |
| 29 | +(start : set σ) |
| 30 | +(accept : set σ) |
| 31 | + |
| 32 | +variables {α : Type u} {σ σ' : Type v} (M : ε_NFA α σ) |
| 33 | + |
| 34 | +namespace ε_NFA |
| 35 | + |
| 36 | +instance : inhabited (ε_NFA α σ) := ⟨ ε_NFA.mk (λ _ _, ∅) ∅ ∅ ⟩ |
| 37 | + |
| 38 | +/-- The `ε_closure` of a set is the set of states which can be reached by taking a finite string of |
| 39 | + ε-transitions from an element of the the set -/ |
| 40 | +inductive ε_closure : set σ → set σ |
| 41 | +| base : ∀ S (s ∈ S), ε_closure S s |
| 42 | +| step : ∀ S s (t ∈ M.step s none), ε_closure S s → ε_closure S t |
| 43 | + |
| 44 | +/-- `M.step_set S a` is the union of the ε-closure of `M.step s a` for all `s ∈ S`. -/ |
| 45 | +def step_set : set σ → α → set σ := |
| 46 | +λ S a, S >>= (λ s, M.ε_closure (M.step s a)) |
| 47 | + |
| 48 | +/-- `M.eval_from S x` computes all possible paths though `M` with input `x` starting at an element |
| 49 | + of `S`. -/ |
| 50 | +def eval_from (start : set σ) : list α → set σ := |
| 51 | +list.foldl M.step_set (M.ε_closure start) |
| 52 | + |
| 53 | +/-- `M.eval x` computes all possible paths though `M` with input `x` starting at an element of |
| 54 | + `M.start`. -/ |
| 55 | +def eval := M.eval_from M.start |
| 56 | + |
| 57 | +/-- `M.accepts` is the language of `x` such that there is an accept state in `M.eval x`. -/ |
| 58 | +def accepts : language α := |
| 59 | +λ x, ∃ S ∈ M.accept, S ∈ M.eval x |
| 60 | + |
| 61 | +/-- `M.to_NFA` is an `NFA` constructed from an `ε_NFA` `M`. -/ |
| 62 | +def to_NFA : NFA α σ := |
| 63 | +{ step := λ S a, M.ε_closure (M.step S a), |
| 64 | + start := M.ε_closure M.start, |
| 65 | + accept := M.accept } |
| 66 | + |
| 67 | +@[simp] lemma to_NFA_eval_from_match (start : set σ) : |
| 68 | + M.to_NFA.eval_from (M.ε_closure start) = M.eval_from start := rfl |
| 69 | + |
| 70 | +@[simp] lemma to_NFA_correct : |
| 71 | + M.to_NFA.accepts = M.accepts := |
| 72 | +begin |
| 73 | + ext x, |
| 74 | + rw [accepts, NFA.accepts, eval, NFA.eval, ←to_NFA_eval_from_match], |
| 75 | + refl |
| 76 | +end |
| 77 | + |
| 78 | +lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts) |
| 79 | + (hlen : fintype.card (set σ) + 1 ≤ list.length x) : |
| 80 | + ∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card (set σ) + 1 ∧ b ≠ [] ∧ |
| 81 | + {a} * language.star {b} * {c} ≤ M.accepts := |
| 82 | +begin |
| 83 | + rw ←to_NFA_correct at hx ⊢, |
| 84 | + exact M.to_NFA.pumping_lemma hx hlen |
| 85 | +end |
| 86 | + |
| 87 | +end ε_NFA |
| 88 | + |
| 89 | +namespace NFA |
| 90 | + |
| 91 | +/-- `M.to_ε_NFA` is an `ε_NFA` constructed from an `NFA` `M` by using the same start and accept |
| 92 | + states and transition functions. -/ |
| 93 | +def to_ε_NFA (M : NFA α σ) : ε_NFA α σ := |
| 94 | +{ step := λ s a, a.cases_on' ∅ (λ a, M.step s a), |
| 95 | + start := M.start, |
| 96 | + accept := M.accept } |
| 97 | + |
| 98 | +@[simp] lemma to_ε_NFA_ε_closure (M : NFA α σ) (S : set σ) : M.to_ε_NFA.ε_closure S = S := |
| 99 | +begin |
| 100 | + ext a, |
| 101 | + split, |
| 102 | + { rintro ( ⟨ _, _, h ⟩ | ⟨ _, _, _, h, _ ⟩ ), |
| 103 | + exact h, |
| 104 | + cases h }, |
| 105 | + { intro h, |
| 106 | + apply ε_NFA.ε_closure.base, |
| 107 | + exact h } |
| 108 | +end |
| 109 | + |
| 110 | +@[simp] lemma to_ε_NFA_eval_from_match (M : NFA α σ) (start : set σ) : |
| 111 | + M.to_ε_NFA.eval_from start = M.eval_from start := |
| 112 | +begin |
| 113 | + rw [eval_from, ε_NFA.eval_from, step_set, ε_NFA.step_set, to_ε_NFA_ε_closure], |
| 114 | + congr, |
| 115 | + ext S s, |
| 116 | + simp only [exists_prop, set.mem_Union, set.bind_def], |
| 117 | + apply exists_congr, |
| 118 | + simp only [and.congr_right_iff], |
| 119 | + intros t ht, |
| 120 | + rw M.to_ε_NFA_ε_closure, |
| 121 | + refl |
| 122 | +end |
| 123 | + |
| 124 | +@[simp] lemma to_ε_NFA_correct (M : NFA α σ) : |
| 125 | + M.to_ε_NFA.accepts = M.accepts := |
| 126 | +begin |
| 127 | + rw [accepts, ε_NFA.accepts, eval, ε_NFA.eval, to_ε_NFA_eval_from_match], |
| 128 | + refl |
| 129 | +end |
| 130 | + |
| 131 | +end NFA |
0 commit comments