Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 07f1235

Browse files
committed
chore(category_theory/opposites): make hom explicit in lemmas (#8088)
1 parent ac156c1 commit 07f1235

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

src/algebraic_topology/simplicial_object.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -246,7 +246,7 @@ def augment (X : simplicial_object C) (X₀ : C) (f : X _[0] ⟶ X₀)
246246
naturality' := begin
247247
intros i j g,
248248
dsimp,
249-
rw ← (quiver.hom.op_unop : g.unop.op = g),
249+
rw ← g.op_unop,
250250
simpa only [← X.map_comp, ← category.assoc, category.comp_id, ← op_comp] using w _ _ _,
251251
end } }
252252

src/category_theory/opposites.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@ lemma quiver.hom.unop_inj {X Y : Cᵒᵖ} :
2424
function.injective (quiver.hom.unop : (X ⟶ Y) → (unop Y ⟶ unop X)) :=
2525
λ _ _ H, congr_arg quiver.hom.op H
2626

27-
@[simp] lemma quiver.hom.unop_op {X Y : C} {f : X ⟶ Y} : f.op.unop = f := rfl
28-
@[simp] lemma quiver.hom.op_unop {X Y : Cᵒᵖ} {f : X ⟶ Y} : f.unop.op = f := rfl
27+
@[simp] lemma quiver.hom.unop_op {X Y : C} (f : X ⟶ Y) : f.op.unop = f := rfl
28+
@[simp] lemma quiver.hom.op_unop {X Y : Cᵒᵖ} (f : X ⟶ Y) : f.unop.op = f := rfl
2929

3030
end quiver
3131

0 commit comments

Comments
 (0)