Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0950ba3

Browse files
committed
refactor(topology/separation): rename indistinguishable to inseparable (#14401)
* Replace `indistinguishable` by `inseparable` in the definition and lemma names. The word "indistinguishable" is too generic. * Rename `t0_space_iff_distinguishable` to `t0_space_iff_not_inseparable` because the name `t0_space_iff_separable` is misleading, slightly golf the proof. * Add `t0_space_iff_nhds_injective`, `nhds_injective`, reorder lemmas around these two.
1 parent 9b3ea03 commit 0950ba3

File tree

7 files changed

+51
-50
lines changed

7 files changed

+51
-50
lines changed

src/algebraic_geometry/properties.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,15 @@ variable (X : Scheme)
3131

3232
instance : t0_space X.carrier :=
3333
begin
34-
rw t0_space_iff_distinguishable,
34+
rw t0_space_iff_not_inseparable,
3535
intros x y h h',
3636
obtain ⟨U, R, ⟨e⟩⟩ := X.local_affine x,
3737
have hy := (h' _ U.1.2).mp U.2,
38-
erw ← subtype_indistinguishable_iff (⟨x, U.2⟩ : U.1.1) (⟨y, hy⟩ : U.1.1) at h',
38+
erw ← subtype_inseparable_iff (⟨x, U.2⟩ : U.1.1) (⟨y, hy⟩ : U.1.1) at h',
3939
let e' : U.1 ≃ₜ prime_spectrum R :=
4040
homeo_of_iso ((LocallyRingedSpace.forget_to_SheafedSpace ⋙ SheafedSpace.forget _).map_iso e),
4141
have := t0_space_of_injective_of_continuous e'.injective e'.continuous,
42-
rw t0_space_iff_distinguishable at this,
42+
rw t0_space_iff_not_inseparable at this,
4343
exact this ⟨x, U.2⟩ ⟨y, hy⟩ (by simpa using h) h'
4444
end
4545

src/topology/maps.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ This file introduces the following properties of a map `f : X → Y` between top
1717
1818
* `inducing f` means the topology on `X` is the one induced via `f` from the topology on `Y`.
1919
These behave like embeddings except they need not be injective. Instead, points of `X` which
20-
are identified by `f` are also indistinguishable in the topology on `X`.
20+
are identified by `f` are also inseparable in the topology on `X`.
2121
* `embedding f` means `f` is inducing and also injective. Equivalently, `f` identifies `X` with
2222
a subspace of `Y`.
2323
* `open_embedding f` means `f` is an embedding with open image, so it identifies `X` with an

src/topology/metric_space/basic.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1022,8 +1022,8 @@ by { convert metric.emetric_closed_ball ε.2, simp }
10221022
@[simp] lemma metric.emetric_ball_top (x : α) : emetric.ball x ⊤ = univ :=
10231023
eq_univ_of_forall $ λ y, edist_lt_top _ _
10241024

1025-
lemma metric.indistinguishable_iff {x y : α} : indistinguishable x y ↔ dist x y = 0 :=
1026-
by rw [emetric.indistinguishable_iff, edist_nndist, dist_nndist, ennreal.coe_eq_zero,
1025+
lemma metric.inseparable_iff {x y : α} : inseparable x y ↔ dist x y = 0 :=
1026+
by rw [emetric.inseparable_iff, edist_nndist, dist_nndist, ennreal.coe_eq_zero,
10271027
nnreal.coe_eq_zero]
10281028

10291029
/-- Build a new pseudometric space from an old one where the bundled uniform structure is provably
@@ -2514,7 +2514,7 @@ separated_def.2 $ λ x y h, eq_of_forall_dist_le $
25142514
/-- If a `pseudo_metric_space` is a T₀ space, then it is a `metric_space`. -/
25152515
def of_t0_pseudo_metric_space (α : Type*) [pseudo_metric_space α] [t0_space α] :
25162516
metric_space α :=
2517-
{ eq_of_dist_eq_zero := λ x y hdist, indistinguishable.eq $ metric.indistinguishable_iff.2 hdist,
2517+
{ eq_of_dist_eq_zero := λ x y hdist, inseparable.eq $ metric.inseparable_iff.2 hdist,
25182518
..‹pseudo_metric_space α› }
25192519

25202520
/-- A metric space induces an emetric space -/

src/topology/metric_space/emetric_space.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -613,8 +613,8 @@ theorem tendsto_at_top [nonempty β] [semilattice_sup β] {u : β → α} {a :
613613
(at_top_basis.tendsto_iff nhds_basis_eball).trans $
614614
by simp only [exists_prop, true_and, mem_Ici, mem_ball]
615615

616-
theorem indistinguishable_iff : indistinguishable x y ↔ edist x y = 0 :=
617-
by simp [indistinguishable_iff_closure, mem_closure_iff, edist_comm, forall_lt_iff_le']
616+
theorem inseparable_iff : inseparable x y ↔ edist x y = 0 :=
617+
by simp [inseparable_iff_closure, mem_closure_iff, edist_comm, forall_lt_iff_le']
618618

619619
/-- In a pseudoemetric space, Cauchy sequences are characterized by the fact that, eventually,
620620
the pseudoedistance between its elements is arbitrarily small -/
@@ -890,7 +890,7 @@ separated_def.2 $ λ x y h, eq_of_forall_edist_le $
890890
/-- If a `pseudo_emetric_space` is a T₀ space, then it is an `emetric_space`. -/
891891
def emetric.of_t0_pseudo_emetric_space (α : Type*) [pseudo_emetric_space α] [t0_space α] :
892892
emetric_space α :=
893-
{ eq_of_edist_eq_zero := λ x y hdist, indistinguishable.eq $ emetric.indistinguishable_iff.2 hdist,
893+
{ eq_of_edist_eq_zero := λ x y hdist, inseparable.eq $ emetric.inseparable_iff.2 hdist,
894894
..‹pseudo_emetric_space α› }
895895

896896
/-- Auxiliary function to replace the uniformity on an emetric space with

src/topology/separation.lean

Lines changed: 36 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ If the space is also compact:
8888
https://en.wikipedia.org/wiki/Separation_axiom
8989
-/
9090

91-
open set filter topological_space
91+
open function set filter topological_space
9292
open_locale topological_space filter classical
9393

9494
universes u v
@@ -166,58 +166,59 @@ lemma t0_space_def (α : Type u) [topological_space α] :
166166
t0_space α ↔ ∀ x y, x ≠ y → ∃ U:set α, is_open U ∧ (xor (x ∈ U) (y ∈ U)) :=
167167
by { split, apply @t0_space.t0, apply t0_space.mk }
168168

169-
/-- Two points are topologically indistinguishable if no open set separates them. -/
170-
def indistinguishable {α : Type u} [topological_space α] (x y : α) : Prop :=
169+
/-- Two points are topologically inseparable if no open set separates them. -/
170+
def inseparable {α : Type u} [topological_space α] (x y : α) : Prop :=
171171
∀ (U : set α) (hU : is_open U), x ∈ U ↔ y ∈ U
172172

173-
lemma indistinguishable_iff_nhds_eq {x y : α} : indistinguishable x y ↔ 𝓝 x = 𝓝 y :=
173+
lemma inseparable_iff_nhds_eq {x y : α} : inseparable x y ↔ 𝓝 x = 𝓝 y :=
174174
⟨λ h, by simp only [nhds_def', h _] { contextual := tt },
175175
λ h U hU, by simp only [← hU.mem_nhds_iff, h]⟩
176176

177-
alias indistinguishable_iff_nhds_eqindistinguishable.nhds_eq _
177+
alias inseparable_iff_nhds_eqinseparable.nhds_eq _
178178

179-
lemma indistinguishable.map [topological_space β] {x y : α} {f : α → β}
180-
(h : indistinguishable x y) (hf : continuous f) :
181-
indistinguishable (f x) (f y) :=
179+
lemma inseparable.map [topological_space β] {x y : α} {f : α → β}
180+
(h : inseparable x y) (hf : continuous f) :
181+
inseparable (f x) (f y) :=
182182
λ U hU, h (f ⁻¹' U) (hU.preimage hf)
183183

184-
lemma t0_space_iff_distinguishable (α : Type u) [topological_space α] :
185-
t0_space α ↔ ∀ (x y : α), x ≠ y → ¬ indistinguishable x y :=
186-
begin
187-
delta indistinguishable,
188-
rw t0_space_def,
189-
push_neg,
190-
simp_rw xor_iff_not_iff,
191-
end
184+
lemma t0_space_iff_not_inseparable (α : Type u) [topological_space α] :
185+
t0_space α ↔ ∀ (x y : α), x ≠ y → ¬inseparable x y :=
186+
by simp only [t0_space_def, xor_iff_not_iff, not_forall, exists_prop, inseparable]
192187

193-
lemma t0_space_iff_indistinguishable (α : Type u) [topological_space α] :
194-
t0_space α ↔ ∀ (x y : α), indistinguishable x y → x = y :=
195-
(t0_space_iff_distinguishable α).trans $ forall₂_congr $ λ a b, not_imp_not
188+
lemma t0_space_iff_inseparable (α : Type u) [topological_space α] :
189+
t0_space α ↔ ∀ (x y : α), inseparable x y → x = y :=
190+
by simp only [t0_space_iff_not_inseparable, ne.def, not_imp_not]
196191

197-
@[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
198-
function.injective.eq_iff $ λ x y h, of_not_not $
199-
λ hne, (t0_space_iff_distinguishable α).mp ‹_› x y hne (indistinguishable_iff_nhds_eq.mpr h)
192+
lemma inseparable.eq [t0_space α] {x y : α} (h : inseparable x y) : x = y :=
193+
(t0_space_iff_inseparable α).1 ‹_› x y h
200194

201-
lemma indistinguishable.eq [t0_space α] {x y : α} (h : indistinguishable x y) : x = y :=
202-
nhds_eq_nhds_iff.mp h.nhds_eq
195+
lemma t0_space_iff_nhds_injective (α : Type u) [topological_space α] :
196+
t0_space α ↔ injective (𝓝 : α → filter α) :=
197+
by simp only [t0_space_iff_inseparable, injective, inseparable_iff_nhds_eq]
198+
199+
lemma nhds_injective [t0_space α] : injective (𝓝 : α → filter α) :=
200+
(t0_space_iff_nhds_injective α).1 ‹_›
201+
202+
@[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
203+
nhds_injective.eq_iff
203204

204-
lemma indistinguishable_iff_closed {x y : α} :
205-
indistinguishable x y ↔ ∀ (U : set α) (hU : is_closed U), x ∈ U ↔ y ∈ U :=
205+
lemma inseparable_iff_closed {x y : α} :
206+
inseparable x y ↔ ∀ (U : set α) (hU : is_closed U), x ∈ U ↔ y ∈ U :=
206207
⟨λ h U hU, not_iff_not.mp (h _ hU.1), λ h U hU, not_iff_not.mp (h _ (is_closed_compl_iff.mpr hU))⟩
207208

208-
lemma indistinguishable_iff_closure (x y : α) :
209-
indistinguishable x y ↔ x ∈ closure ({y} : set α) ∧ y ∈ closure ({x} : set α) :=
209+
lemma inseparable_iff_closure (x y : α) :
210+
inseparable x y ↔ x ∈ closure ({y} : set α) ∧ y ∈ closure ({x} : set α) :=
210211
begin
211-
rw indistinguishable_iff_closed,
212+
rw inseparable_iff_closed,
212213
exact ⟨λ h, ⟨(h _ is_closed_closure).mpr (subset_closure $ set.mem_singleton y),
213214
(h _ is_closed_closure).mp (subset_closure $ set.mem_singleton x)⟩,
214215
λ h U hU, ⟨λ hx, (is_closed.closure_subset_iff hU).mpr (set.singleton_subset_iff.mpr hx) h.2,
215216
λ hy, (is_closed.closure_subset_iff hU).mpr (set.singleton_subset_iff.mpr hy) h.1⟩⟩
216217
end
217218

218-
lemma subtype_indistinguishable_iff {α : Type u} [topological_space α] {U : set α} (x y : U) :
219-
indistinguishable x y ↔ indistinguishable (x : α) y :=
220-
by { simp_rw [indistinguishable_iff_closure, closure_subtype, image_singleton] }
219+
lemma subtype_inseparable_iff {α : Type u} [topological_space α] {U : set α} (x y : U) :
220+
inseparable x y ↔ inseparable (x : α) y :=
221+
by { simp_rw [inseparable_iff_closure, closure_subtype, image_singleton] }
221222

222223
theorem minimal_nonempty_closed_subsingleton [t0_space α] {s : set α} (hs : is_closed s)
223224
(hmin : ∀ t ⊆ s, t.nonempty → is_closed t → t = s) :
@@ -298,15 +299,15 @@ embedding_subtype_coe.t0_space
298299

299300
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
300301
t0_space α ↔ (∀ a b : α, a ≠ b → (a ∉ closure ({b} : set α) ∨ b ∉ closure ({a} : set α))) :=
301-
by simp only [t0_space_iff_distinguishable, indistinguishable_iff_closure, not_and_distrib]
302+
by simp only [t0_space_iff_not_inseparable, inseparable_iff_closure, not_and_distrib]
302303

303304
instance [topological_space β] [t0_space α] [t0_space β] : t0_space (α × β) :=
304-
(t0_space_iff_indistinguishable _).2 $
305+
(t0_space_iff_inseparable _).2 $
305306
λ x y h, prod.ext (h.map continuous_fst).eq (h.map continuous_snd).eq
306307

307308
instance {ι : Type*} {π : ι → Type*} [Π i, topological_space (π i)] [Π i, t0_space (π i)] :
308309
t0_space (Π i, π i) :=
309-
(t0_space_iff_indistinguishable _).2 $ λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq
310+
(t0_space_iff_inseparable _).2 $ λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq
310311

311312
/-- A T₁ space, also known as a Fréchet space, is a topological space
312313
where every singleton set is closed. Equivalently, for every pair

src/topology/sets/opens.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -199,7 +199,7 @@ protected lemma comap_comap (g : C(β, γ)) (f : C(α, β)) (U : opens γ) :
199199
comap f (comap g U) = comap (g.comp f) U := rfl
200200

201201
lemma comap_injective [t0_space β] : injective (comap : C(α, β) → frame_hom (opens β) (opens α)) :=
202-
λ f g h, continuous_map.ext $ λ a, indistinguishable.eq $ λ s hs, begin
202+
λ f g h, continuous_map.ext $ λ a, inseparable.eq $ λ s hs, begin
203203
simp_rw ←mem_preimage,
204204
congr' 2,
205205
have := fun_like.congr_fun h ⟨_, hs⟩,

src/topology/sober.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -66,12 +66,12 @@ begin
6666
λ h U hU, not_imp_not.mp (h _ (is_open_compl_iff.mpr hU))⟩,
6767
end
6868

69-
lemma indistinguishable_iff_specializes_and (x y : α) :
70-
indistinguishable x y ↔ x ⤳ y ∧ y ⤳ x :=
71-
(indistinguishable_iff_closure x y).trans (and_comm _ _)
69+
lemma inseparable_iff_specializes_and (x y : α) :
70+
inseparable x y ↔ x ⤳ y ∧ y ⤳ x :=
71+
(inseparable_iff_closure x y).trans (and_comm _ _)
7272

7373
lemma specializes_antisymm [t0_space α] (x y : α) : x ⤳ y → y ⤳ x → x = y :=
74-
λ h₁ h₂, ((indistinguishable_iff_specializes_and _ _).mpr ⟨h₁, h₂⟩).eq
74+
λ h₁ h₂, ((inseparable_iff_specializes_and _ _).mpr ⟨h₁, h₂⟩).eq
7575

7676
lemma specializes.map {x y : α} (h : x ⤳ y) {f : α → β} (hf : continuous f) : f x ⤳ f y :=
7777
begin

0 commit comments

Comments
 (0)