@@ -88,7 +88,7 @@ If the space is also compact:
88
88
https://en.wikipedia.org/wiki/Separation_axiom
89
89
-/
90
90
91
- open set filter topological_space
91
+ open function set filter topological_space
92
92
open_locale topological_space filter classical
93
93
94
94
universes u v
@@ -166,58 +166,59 @@ lemma t0_space_def (α : Type u) [topological_space α] :
166
166
t0_space α ↔ ∀ x y, x ≠ y → ∃ U:set α, is_open U ∧ (xor (x ∈ U) (y ∈ U)) :=
167
167
by { split, apply @t0_space.t0, apply t0_space.mk }
168
168
169
- /-- Two points are topologically indistinguishable if no open set separates them. -/
170
- def indistinguishable {α : Type u} [topological_space α] (x y : α) : Prop :=
169
+ /-- Two points are topologically inseparable if no open set separates them. -/
170
+ def inseparable {α : Type u} [topological_space α] (x y : α) : Prop :=
171
171
∀ (U : set α) (hU : is_open U), x ∈ U ↔ y ∈ U
172
172
173
- lemma indistinguishable_iff_nhds_eq {x y : α} : indistinguishable x y ↔ 𝓝 x = 𝓝 y :=
173
+ lemma inseparable_iff_nhds_eq {x y : α} : inseparable x y ↔ 𝓝 x = 𝓝 y :=
174
174
⟨λ h, by simp only [nhds_def', h _] { contextual := tt },
175
175
λ h U hU, by simp only [← hU.mem_nhds_iff, h]⟩
176
176
177
- alias indistinguishable_iff_nhds_eq ↔ indistinguishable .nhds_eq _
177
+ alias inseparable_iff_nhds_eq ↔ inseparable .nhds_eq _
178
178
179
- lemma indistinguishable .map [topological_space β] {x y : α} {f : α → β}
180
- (h : indistinguishable x y) (hf : continuous f) :
181
- indistinguishable (f x) (f y) :=
179
+ lemma inseparable .map [topological_space β] {x y : α} {f : α → β}
180
+ (h : inseparable x y) (hf : continuous f) :
181
+ inseparable (f x) (f y) :=
182
182
λ U hU, h (f ⁻¹' U) (hU.preimage hf)
183
183
184
- lemma t0_space_iff_distinguishable (α : Type u) [topological_space α] :
185
- t0_space α ↔ ∀ (x y : α), x ≠ y → ¬ indistinguishable x y :=
186
- begin
187
- delta indistinguishable,
188
- rw t0_space_def,
189
- push_neg,
190
- simp_rw xor_iff_not_iff,
191
- end
184
+ lemma t0_space_iff_not_inseparable (α : Type u) [topological_space α] :
185
+ t0_space α ↔ ∀ (x y : α), x ≠ y → ¬inseparable x y :=
186
+ by simp only [t0_space_def, xor_iff_not_iff, not_forall, exists_prop, inseparable]
192
187
193
- lemma t0_space_iff_indistinguishable (α : Type u) [topological_space α] :
194
- t0_space α ↔ ∀ (x y : α), indistinguishable x y → x = y :=
195
- (t0_space_iff_distinguishable α).trans $ forall₂_congr $ λ a b , not_imp_not
188
+ lemma t0_space_iff_inseparable (α : Type u) [topological_space α] :
189
+ t0_space α ↔ ∀ (x y : α), inseparable x y → x = y :=
190
+ by simp only [t0_space_iff_not_inseparable, ne.def , not_imp_not]
196
191
197
- @[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
198
- function.injective.eq_iff $ λ x y h, of_not_not $
199
- λ hne, (t0_space_iff_distinguishable α).mp ‹_› x y hne (indistinguishable_iff_nhds_eq.mpr h)
192
+ lemma inseparable.eq [t0_space α] {x y : α} (h : inseparable x y) : x = y :=
193
+ (t0_space_iff_inseparable α).1 ‹_› x y h
200
194
201
- lemma indistinguishable.eq [t0_space α] {x y : α} (h : indistinguishable x y) : x = y :=
202
- nhds_eq_nhds_iff.mp h.nhds_eq
195
+ lemma t0_space_iff_nhds_injective (α : Type u) [topological_space α] :
196
+ t0_space α ↔ injective (𝓝 : α → filter α) :=
197
+ by simp only [t0_space_iff_inseparable, injective, inseparable_iff_nhds_eq]
198
+
199
+ lemma nhds_injective [t0_space α] : injective (𝓝 : α → filter α) :=
200
+ (t0_space_iff_nhds_injective α).1 ‹_›
201
+
202
+ @[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
203
+ nhds_injective.eq_iff
203
204
204
- lemma indistinguishable_iff_closed {x y : α} :
205
- indistinguishable x y ↔ ∀ (U : set α) (hU : is_closed U), x ∈ U ↔ y ∈ U :=
205
+ lemma inseparable_iff_closed {x y : α} :
206
+ inseparable x y ↔ ∀ (U : set α) (hU : is_closed U), x ∈ U ↔ y ∈ U :=
206
207
⟨λ h U hU, not_iff_not.mp (h _ hU.1 ), λ h U hU, not_iff_not.mp (h _ (is_closed_compl_iff.mpr hU))⟩
207
208
208
- lemma indistinguishable_iff_closure (x y : α) :
209
- indistinguishable x y ↔ x ∈ closure ({y} : set α) ∧ y ∈ closure ({x} : set α) :=
209
+ lemma inseparable_iff_closure (x y : α) :
210
+ inseparable x y ↔ x ∈ closure ({y} : set α) ∧ y ∈ closure ({x} : set α) :=
210
211
begin
211
- rw indistinguishable_iff_closed ,
212
+ rw inseparable_iff_closed ,
212
213
exact ⟨λ h, ⟨(h _ is_closed_closure).mpr (subset_closure $ set.mem_singleton y),
213
214
(h _ is_closed_closure).mp (subset_closure $ set.mem_singleton x)⟩,
214
215
λ h U hU, ⟨λ hx, (is_closed.closure_subset_iff hU).mpr (set.singleton_subset_iff.mpr hx) h.2 ,
215
216
λ hy, (is_closed.closure_subset_iff hU).mpr (set.singleton_subset_iff.mpr hy) h.1 ⟩⟩
216
217
end
217
218
218
- lemma subtype_indistinguishable_iff {α : Type u} [topological_space α] {U : set α} (x y : U) :
219
- indistinguishable x y ↔ indistinguishable (x : α) y :=
220
- by { simp_rw [indistinguishable_iff_closure , closure_subtype, image_singleton] }
219
+ lemma subtype_inseparable_iff {α : Type u} [topological_space α] {U : set α} (x y : U) :
220
+ inseparable x y ↔ inseparable (x : α) y :=
221
+ by { simp_rw [inseparable_iff_closure , closure_subtype, image_singleton] }
221
222
222
223
theorem minimal_nonempty_closed_subsingleton [t0_space α] {s : set α} (hs : is_closed s)
223
224
(hmin : ∀ t ⊆ s, t.nonempty → is_closed t → t = s) :
@@ -298,15 +299,15 @@ embedding_subtype_coe.t0_space
298
299
299
300
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
300
301
t0_space α ↔ (∀ a b : α, a ≠ b → (a ∉ closure ({b} : set α) ∨ b ∉ closure ({a} : set α))) :=
301
- by simp only [t0_space_iff_distinguishable, indistinguishable_iff_closure , not_and_distrib]
302
+ by simp only [t0_space_iff_not_inseparable, inseparable_iff_closure , not_and_distrib]
302
303
303
304
instance [topological_space β] [t0_space α] [t0_space β] : t0_space (α × β) :=
304
- (t0_space_iff_indistinguishable _).2 $
305
+ (t0_space_iff_inseparable _).2 $
305
306
λ x y h, prod.ext (h.map continuous_fst).eq (h.map continuous_snd).eq
306
307
307
308
instance {ι : Type *} {π : ι → Type *} [Π i, topological_space (π i)] [Π i, t0_space (π i)] :
308
309
t0_space (Π i, π i) :=
309
- (t0_space_iff_indistinguishable _).2 $ λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq
310
+ (t0_space_iff_inseparable _).2 $ λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq
310
311
311
312
/-- A T₁ space, also known as a Fréchet space, is a topological space
312
313
where every singleton set is closed. Equivalently, for every pair
0 commit comments