Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0a34878

Browse files
committed
chore(topology/algebra/continuous_functions): making names consistent with the smooth library (#7844)
1 parent 06200c8 commit 0a34878

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

src/topology/continuous_function/algebra.lean

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -36,14 +36,14 @@ instance has_mul [has_mul β] [has_continuous_mul β] : has_mul C(α, β) :=
3636
⟨λ f g, ⟨f * g, continuous_mul.comp (f.continuous.prod_mk g.continuous : _)⟩⟩
3737

3838
@[simp, norm_cast, to_additive]
39-
lemma mul_coe [has_mul β] [has_continuous_mul β] (f g : C(α, β)) :
39+
lemma coe_mul [has_mul β] [has_continuous_mul β] (f g : C(α, β)) :
4040
((f * g : C(α, β)) : α → β) = (f : α → β) * (g : α → β) := rfl
4141

4242
@[to_additive]
4343
instance [has_one β] : has_one C(α, β) := ⟨const (1 : β)⟩
4444

4545
@[simp, norm_cast, to_additive]
46-
lemma one_coe [has_one β] :
46+
lemma coe_one [has_one β] :
4747
((1 : C(α, β)) : α → β) = (1 : α → β) := rfl
4848

4949
@[simp, to_additive] lemma mul_comp {α : Type*} {β : Type*} {γ : Type*}
@@ -121,7 +121,7 @@ instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
121121
simps]
122122
def coe_fn_monoid_hom {α : Type*} {β : Type*} [topological_space α] [topological_space β]
123123
[monoid β] [has_continuous_mul β] : C(α, β) →* (α → β) :=
124-
{ to_fun := coe_fn, map_one' := one_coe, map_mul' := mul_coe }
124+
{ to_fun := coe_fn, map_one' := coe_one, map_mul' := coe_mul }
125125

126126
/-- Composition on the right as an `monoid_hom`. Similar to `monoid_hom.comp_hom'`. -/
127127
@[to_additive "Composition on the right as an `add_monoid_hom`. Similar to
@@ -132,7 +132,7 @@ def comp_monoid_hom' {α : Type*} {β : Type*} {γ : Type*}
132132
{ to_fun := λ f, f.comp g, map_one' := one_comp g, map_mul' := λ f₁ f₂, mul_comp f₁ f₂ g }
133133

134134
@[simp, norm_cast]
135-
lemma pow_coe {α : Type*} {β : Type*} [topological_space α] [topological_space β]
135+
lemma coe_pow {α : Type*} {β : Type*} [topological_space α] [topological_space β]
136136
[monoid β] [has_continuous_mul β] (f : C(α, β)) (n : ℕ) :
137137
((f^n : C(α, β)) : α → β) = (f : α → β)^n :=
138138
(coe_fn_monoid_hom : C(α, β) →* _).map_pow f n
@@ -174,13 +174,13 @@ instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
174174
..continuous_map.monoid }
175175

176176
@[simp, norm_cast, to_additive]
177-
lemma inv_coe {α : Type*} {β : Type*} [topological_space α] [topological_space β]
177+
lemma coe_inv {α : Type*} {β : Type*} [topological_space α] [topological_space β]
178178
[group β] [topological_group β] (f : C(α, β)) :
179179
((f⁻¹ : C(α, β)) : α → β) = (f⁻¹ : α → β) :=
180180
rfl
181181

182182
@[simp, norm_cast, to_additive]
183-
lemma div_coe {α : Type*} {β : Type*} [topological_space α] [topological_space β]
183+
lemma coe_div {α : Type*} {β : Type*} [topological_space α] [topological_space β]
184184
[group β] [topological_group β] (f g : C(α, β)) :
185185
((f / g : C(α, β)) : α → β) = (f : α → β) / (g : α → β) :=
186186
by { simp only [div_eq_mul_inv], refl, }
@@ -289,7 +289,7 @@ instance continuous_has_scalar : has_scalar R { f : α → M | continuous f } :=
289289
⟨λ r f, ⟨r • f, f.property.const_smul r⟩⟩
290290

291291
@[simp, norm_cast]
292-
lemma continuous_functions.smul_coe (f : { f : α → M | continuous f }) (r : R) :
292+
lemma continuous_functions.coe_smul (f : { f : α → M | continuous f }) (r : R) :
293293
⇑(r • f) = r • f := rfl
294294

295295
instance continuous_module [topological_add_group M] :
@@ -314,7 +314,7 @@ instance
314314
⟨λ r f, ⟨r • f, f.continuous.const_smul r⟩⟩
315315

316316
@[simp, norm_cast]
317-
lemma smul_coe [module R M] [has_continuous_smul R M]
317+
lemma coe_smul [module R M] [has_continuous_smul R M]
318318
(c : R) (f : C(α, M)) : ⇑(c • f) = c • f := rfl
319319

320320
lemma smul_apply [module R M] [has_continuous_smul R M]
@@ -344,7 +344,7 @@ variables (R)
344344
@[simps]
345345
def coe_fn_linear_map : C(α, M) →ₗ[R] (α → M) :=
346346
{ to_fun := coe_fn,
347-
map_smul' := smul_coe,
347+
map_smul' := coe_smul,
348348
..(coe_fn_add_monoid_hom : C(α, M) →+ _) }
349349

350350
end continuous_map
@@ -428,10 +428,10 @@ def continuous_map.coe_fn_alg_hom : C(α, A) →ₐ[R] (α → A) :=
428428
{ to_fun := coe_fn,
429429
commutes' := λ r, rfl,
430430
-- `..(continuous_map.coe_fn_ring_hom : C(α, A) →+* _)` times out for some reason
431-
map_zero' := continuous_map.zero_coe,
432-
map_one' := continuous_map.one_coe,
433-
map_add' := continuous_map.add_coe,
434-
map_mul' := continuous_map.mul_coe }
431+
map_zero' := continuous_map.coe_zero,
432+
map_one' := continuous_map.coe_one,
433+
map_add' := continuous_map.coe_add,
434+
map_mul' := continuous_map.coe_mul }
435435

436436
variables {R}
437437

0 commit comments

Comments
 (0)