@@ -36,14 +36,14 @@ instance has_mul [has_mul β] [has_continuous_mul β] : has_mul C(α, β) :=
36
36
⟨λ f g, ⟨f * g, continuous_mul.comp (f.continuous.prod_mk g.continuous : _)⟩⟩
37
37
38
38
@[simp, norm_cast, to_additive]
39
- lemma mul_coe [has_mul β] [has_continuous_mul β] (f g : C(α, β)) :
39
+ lemma coe_mul [has_mul β] [has_continuous_mul β] (f g : C(α, β)) :
40
40
((f * g : C(α, β)) : α → β) = (f : α → β) * (g : α → β) := rfl
41
41
42
42
@[to_additive]
43
43
instance [has_one β] : has_one C(α, β) := ⟨const (1 : β)⟩
44
44
45
45
@[simp, norm_cast, to_additive]
46
- lemma one_coe [has_one β] :
46
+ lemma coe_one [has_one β] :
47
47
((1 : C(α, β)) : α → β) = (1 : α → β) := rfl
48
48
49
49
@[simp, to_additive] lemma mul_comp {α : Type *} {β : Type *} {γ : Type *}
@@ -121,7 +121,7 @@ instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
121
121
simps]
122
122
def coe_fn_monoid_hom {α : Type *} {β : Type *} [topological_space α] [topological_space β]
123
123
[monoid β] [has_continuous_mul β] : C(α, β) →* (α → β) :=
124
- { to_fun := coe_fn, map_one' := one_coe , map_mul' := mul_coe }
124
+ { to_fun := coe_fn, map_one' := coe_one , map_mul' := coe_mul }
125
125
126
126
/-- Composition on the right as an `monoid_hom`. Similar to `monoid_hom.comp_hom'`. -/
127
127
@[to_additive " Composition on the right as an `add_monoid_hom`. Similar to
@@ -132,7 +132,7 @@ def comp_monoid_hom' {α : Type*} {β : Type*} {γ : Type*}
132
132
{ to_fun := λ f, f.comp g, map_one' := one_comp g, map_mul' := λ f₁ f₂, mul_comp f₁ f₂ g }
133
133
134
134
@[simp, norm_cast]
135
- lemma pow_coe {α : Type *} {β : Type *} [topological_space α] [topological_space β]
135
+ lemma coe_pow {α : Type *} {β : Type *} [topological_space α] [topological_space β]
136
136
[monoid β] [has_continuous_mul β] (f : C(α, β)) (n : ℕ) :
137
137
((f^n : C(α, β)) : α → β) = (f : α → β)^n :=
138
138
(coe_fn_monoid_hom : C(α, β) →* _).map_pow f n
@@ -174,13 +174,13 @@ instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
174
174
..continuous_map.monoid }
175
175
176
176
@[simp, norm_cast, to_additive]
177
- lemma inv_coe {α : Type *} {β : Type *} [topological_space α] [topological_space β]
177
+ lemma coe_inv {α : Type *} {β : Type *} [topological_space α] [topological_space β]
178
178
[group β] [topological_group β] (f : C(α, β)) :
179
179
((f⁻¹ : C(α, β)) : α → β) = (f⁻¹ : α → β) :=
180
180
rfl
181
181
182
182
@[simp, norm_cast, to_additive]
183
- lemma div_coe {α : Type *} {β : Type *} [topological_space α] [topological_space β]
183
+ lemma coe_div {α : Type *} {β : Type *} [topological_space α] [topological_space β]
184
184
[group β] [topological_group β] (f g : C(α, β)) :
185
185
((f / g : C(α, β)) : α → β) = (f : α → β) / (g : α → β) :=
186
186
by { simp only [div_eq_mul_inv], refl, }
@@ -289,7 +289,7 @@ instance continuous_has_scalar : has_scalar R { f : α → M | continuous f } :=
289
289
⟨λ r f, ⟨r • f, f.property.const_smul r⟩⟩
290
290
291
291
@[simp, norm_cast]
292
- lemma continuous_functions.smul_coe (f : { f : α → M | continuous f }) (r : R) :
292
+ lemma continuous_functions.coe_smul (f : { f : α → M | continuous f }) (r : R) :
293
293
⇑(r • f) = r • f := rfl
294
294
295
295
instance continuous_module [topological_add_group M] :
@@ -314,7 +314,7 @@ instance
314
314
⟨λ r f, ⟨r • f, f.continuous.const_smul r⟩⟩
315
315
316
316
@[simp, norm_cast]
317
- lemma smul_coe [module R M] [has_continuous_smul R M]
317
+ lemma coe_smul [module R M] [has_continuous_smul R M]
318
318
(c : R) (f : C(α, M)) : ⇑(c • f) = c • f := rfl
319
319
320
320
lemma smul_apply [module R M] [has_continuous_smul R M]
@@ -344,7 +344,7 @@ variables (R)
344
344
@[simps]
345
345
def coe_fn_linear_map : C(α, M) →ₗ[R] (α → M) :=
346
346
{ to_fun := coe_fn,
347
- map_smul' := smul_coe ,
347
+ map_smul' := coe_smul ,
348
348
..(coe_fn_add_monoid_hom : C(α, M) →+ _) }
349
349
350
350
end continuous_map
@@ -428,10 +428,10 @@ def continuous_map.coe_fn_alg_hom : C(α, A) →ₐ[R] (α → A) :=
428
428
{ to_fun := coe_fn,
429
429
commutes' := λ r, rfl,
430
430
-- `..(continuous_map.coe_fn_ring_hom : C(α, A) →+* _)` times out for some reason
431
- map_zero' := continuous_map.zero_coe ,
432
- map_one' := continuous_map.one_coe ,
433
- map_add' := continuous_map.add_coe ,
434
- map_mul' := continuous_map.mul_coe }
431
+ map_zero' := continuous_map.coe_zero ,
432
+ map_one' := continuous_map.coe_one ,
433
+ map_add' := continuous_map.coe_add ,
434
+ map_mul' := continuous_map.coe_mul }
435
435
436
436
variables {R}
437
437
0 commit comments