@@ -338,11 +338,11 @@ lemma sum.dist_eq {x y : X ⊕ Y} : dist x y = sum.dist x y := rfl
338
338
339
339
/-- The left injection of a space in a disjoint union is an isometry -/
340
340
lemma isometry_inl : isometry (sum.inl : X → (X ⊕ Y)) :=
341
- isometry_emetric_iff_metric. 2 $ λx y, rfl
341
+ isometry.of_dist_eq $ λ x y, rfl
342
342
343
343
/-- The right injection of a space in a disjoint union is an isometry -/
344
344
lemma isometry_inr : isometry (sum.inr : Y → (X ⊕ Y)) :=
345
- isometry_emetric_iff_metric. 2 $ λx y, rfl
345
+ isometry.of_dist_eq $ λ x y, rfl
346
346
347
347
end sum
348
348
@@ -487,7 +487,7 @@ open filter
487
487
488
488
/-- The injection of a space in a disjoint union is an isometry -/
489
489
lemma isometry_mk (i : ι) : isometry (sigma.mk i : E i → Σ k, E k) :=
490
- isometry_emetric_iff_metric. 2 ( by simp)
490
+ isometry.of_dist_eq (λ x y, by simp)
491
491
492
492
/-- A disjoint union of complete metric spaces is complete. -/
493
493
protected lemma complete_space [∀ i, complete_space (E i)] : complete_space (Σ i, E i) :=
@@ -559,10 +559,10 @@ begin
559
559
end
560
560
561
561
lemma to_glue_l_isometry (hΦ : isometry Φ) (hΨ : isometry Ψ) : isometry (to_glue_l hΦ hΨ) :=
562
- isometry_emetric_iff_metric. 2 $ λ_ _, rfl
562
+ isometry.of_dist_eq $ λ_ _, rfl
563
563
564
564
lemma to_glue_r_isometry (hΦ : isometry Φ) (hΨ : isometry Ψ) : isometry (to_glue_r hΦ hΨ) :=
565
- isometry_emetric_iff_metric. 2 $ λ_ _, rfl
565
+ isometry.of_dist_eq $ λ_ _, rfl
566
566
567
567
end gluing -- section
568
568
@@ -656,7 +656,7 @@ instance (I : ∀ n, isometry (f n)) [inhabited (X 0)] : inhabited (inductive_li
656
656
657
657
/-- The map `to_inductive_limit n` mapping `X n` to the inductive limit is an isometry. -/
658
658
lemma to_inductive_limit_isometry (I : ∀ n, isometry (f n)) (n : ℕ) :
659
- isometry (to_inductive_limit I n) := isometry_emetric_iff_metric. 2 $ λx y,
659
+ isometry (to_inductive_limit I n) := isometry.of_dist_eq $ λ x y,
660
660
begin
661
661
change inductive_limit_dist f ⟨n, x⟩ ⟨n, y⟩ = dist x y,
662
662
rw [inductive_limit_dist_eq_dist I ⟨n, x⟩ ⟨n, y⟩ n (le_refl n) (le_refl n),
0 commit comments