@@ -338,13 +338,22 @@ from le_antisymm
338
338
| _, h, (or.inr rfl) := inf_le_right_of_le $ infi_le_of_le b $ infi_le _ h
339
339
end )
340
340
341
- lemma tendsto_orderable {f : β → α} {a : α} {x : filter β}
342
- (h₁ : ∀a'<a, {b | a' < f b } ∈ x.sets) (h₂ : ∀a'>a, {b | a' > f b } ∈ x.sets) :
343
- tendsto f x (nhds a) :=
344
- by rw [@nhds_eq_orderable α _ _];
345
- from tendsto_inf.2
346
- ⟨tendsto_infi.2 $ assume b, tendsto_infi.2 $ assume hb, tendsto_principal.2 $ h₁ b hb,
347
- tendsto_infi.2 $ assume b, tendsto_infi.2 $ assume hb, tendsto_principal.2 $ h₂ b hb⟩
341
+ lemma tendsto_orderable {f : β → α} {a : α} {x : filter β} :
342
+ tendsto f x (nhds a) ↔ (∀a'<a, {b | a' < f b} ∈ x.sets) ∧ (∀a'>a, {b | a' > f b} ∈ x.sets) :=
343
+ by simp [@nhds_eq_orderable α _ _, tendsto_inf, tendsto_infi, tendsto_principal]
344
+
345
+ /-- Also known as squeez or sandwich theorem. -/
346
+ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le {f g h : β → α} {b : filter β} {a : α} (hb : b ≠ ⊥)
347
+ (hg : tendsto g b (nhds a)) (hh : tendsto h b (nhds a))
348
+ (hgf : {b | g b ≤ f b} ∈ b.sets) (hfh : {b | f b ≤ h b} ∈ b.sets) :
349
+ tendsto f b (nhds a) :=
350
+ tendsto_orderable.2
351
+ ⟨assume a' h',
352
+ have {b : β | a' < g b} ∈ b.sets, from (tendsto_orderable.1 hg).left a' h',
353
+ by filter_upwards [this , hgf] assume a, lt_of_lt_of_le,
354
+ assume a' h',
355
+ have {b : β | h b < a'} ∈ b.sets, from (tendsto_orderable.1 hh).right a' h',
356
+ by filter_upwards [this , hfh] assume a h₁ h₂, lt_of_le_of_lt h₂ h₁⟩
348
357
349
358
lemma nhds_orderable_unbounded {a : α} (hu : ∃u, a < u) (hl : ∃l, l < a) :
350
359
nhds a = (⨅l (h₂ : l < a) u (h₂ : a < u), principal {x | l < x ∧ x < u }) :=
0 commit comments