This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +17
-7
lines changed Expand file tree Collapse file tree 2 files changed +17
-7
lines changed Original file line number Diff line number Diff line change @@ -271,16 +271,16 @@ by { dsimp [inv_fun_id_assoc], tidy }
271
271
by { dsimp [inv_fun_id_assoc], tidy }
272
272
273
273
/-- If `C` is equivalent to `D`, then `C ⥤ E` is equivalent to `D ⥤ E`. -/
274
- @[simps {rhs_md:=semireducible}]
274
+ @[simps functor inverse unit_iso counit_iso {rhs_md:=semireducible}]
275
275
def congr_left (e : C ≌ D) : (C ⥤ E) ≌ (D ⥤ E) :=
276
276
equivalence.mk
277
277
((whiskering_left _ _ _).obj e.inverse)
278
278
((whiskering_left _ _ _).obj e.functor)
279
279
(nat_iso.of_components (λ F, (e.fun_inv_id_assoc F).symm) (by tidy))
280
280
(nat_iso.of_components (λ F, e.inv_fun_id_assoc F) (by tidy))
281
-
281
+
282
282
/-- If `C` is equivalent to `D`, then `E ⥤ C` is equivalent to `E ⥤ D`. -/
283
- @[simps {rhs_md:=semireducible}]
283
+ @[simps functor inverse unit_iso counit_iso {rhs_md:=semireducible}]
284
284
def congr_right (e : C ≌ D) : (E ⥤ C) ≌ (E ⥤ D) :=
285
285
equivalence.mk
286
286
((whiskering_right _ _ _).obj e.functor)
Original file line number Diff line number Diff line change @@ -309,13 +309,23 @@ def unique_extension_along_yoneda (L : (Cᵒᵖ ⥤ Type u₁) ⥤ ℰ) (hL : yo
309
309
nat_iso_of_nat_iso_on_representables _ _ (hL ≪≫ (is_extension_along_yoneda _).symm)
310
310
311
311
/--
312
- If `L` preserves colimits and `ℰ` has them, then it is a left adjoint. Note this is a (partial)
313
- converse to `left_adjoint_preserves_colimits` .
312
+ If `L` preserves colimits and `ℰ` has them, then it is a left adjoint. This is a special case of
313
+ `is_left_adjoint_of_preserves_colimits` used to prove that .
314
314
-/
315
- def is_left_adjoint_of_preserves_colimits (L : (Cᵒᵖ ⥤ Type u₁) ⥤ ℰ) [preserves_colimits L] :
315
+ def is_left_adjoint_of_preserves_colimits_aux (L : (Cᵒᵖ ⥤ Type u₁) ⥤ ℰ) [preserves_colimits L] :
316
316
is_left_adjoint L :=
317
317
{ right := restricted_yoneda (yoneda ⋙ L),
318
318
adj := (yoneda_adjunction _).of_nat_iso_left
319
- (unique_extension_along_yoneda _ L (iso.refl _)).symm }
319
+ ((unique_extension_along_yoneda _ L (iso.refl _)).symm) }
320
+
321
+ /--
322
+ If `L` preserves colimits and `ℰ` has them, then it is a left adjoint. Note this is a (partial)
323
+ converse to `left_adjoint_preserves_colimits`.
324
+ -/
325
+ def is_left_adjoint_of_preserves_colimits (L : (C ⥤ Type u₁) ⥤ ℰ) [preserves_colimits L] :
326
+ is_left_adjoint L :=
327
+ let e : (_ ⥤ Type u₁) ≌ (_ ⥤ Type u₁) := (op_op_equivalence C).congr_left,
328
+ t := is_left_adjoint_of_preserves_colimits_aux (e.functor ⋙ L : _)
329
+ in by exactI adjunction.left_adjoint_of_nat_iso (e.inv_fun_id_assoc _)
320
330
321
331
end category_theory
You can’t perform that action at this time.
0 commit comments