Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0c863e9

Browse files
urkudsgouezel
andcommitted
refactor(data/set/finite): change type of set.finite.dependent_image (#6475)
The old lemma combined a statement similar to `set.finite.image` with `set.finite.subset`. The new statement is a direct generalization of `set.finite.image`. Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr>
1 parent c087011 commit 0c863e9

File tree

2 files changed

+7
-11
lines changed

2 files changed

+7
-11
lines changed

src/analysis/analytic/composition.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -590,8 +590,8 @@ end
590590
power series, here given a a finset.
591591
See also `comp_partial_sum`. -/
592592
def comp_partial_sum_target (m M N : ℕ) : finset (Σ n, composition n) :=
593-
set.finite.to_finset $ (finset.finite_to_set _).dependent_image
594-
(comp_partial_sum_target_subset_image_comp_partial_sum_source m M N)
593+
set.finite.to_finset $ ((finset.finite_to_set _).dependent_image _).subset $
594+
comp_partial_sum_target_subset_image_comp_partial_sum_source m M N
595595

596596
@[simp] lemma mem_comp_partial_sum_target_iff {m M N : ℕ} {a : Σ n, composition n} :
597597
a ∈ comp_partial_sum_target m M N ↔

src/data/set/finite.lean

Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -274,16 +274,12 @@ theorem infinite_of_infinite_image (f : α → β) {s : set α} (hs : (f '' s).i
274274
s.infinite :=
275275
mt (finite.image f) hs
276276

277-
lemma finite.dependent_image {s : set α} (hs : finite s) {F : Π i ∈ s, β} {t : set β}
278-
(H : ∀ y ∈ t, ∃ x (hx : x ∈ s), y = F x hx) : set.finite t :=
277+
lemma finite.dependent_image {s : set α} (hs : finite s) (F : Π i ∈ s, β) :
278+
finite {y : β | ∃ x (hx : x ∈ s), y = F x hx} :=
279279
begin
280-
let G : s → β := λ x, F x.1 x.2,
281-
have A : t ⊆ set.range G,
282-
{ assume y hy,
283-
rcases H y hy with ⟨x, hx, xy⟩,
284-
refine ⟨⟨x, hx⟩, xy.symm⟩ },
285-
letI : fintype s := finite.fintype hs,
286-
exact (finite_range G).subset A
280+
letI : fintype s := hs.fintype,
281+
convert finite_range (λ x : s, F x x.2),
282+
simp only [set_coe.exists, subtype.coe_mk, eq_comm],
287283
end
288284

289285
instance fintype_map {α β} [decidable_eq β] :

0 commit comments

Comments
 (0)