|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Kexing Ying. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Kexing Ying |
| 5 | +-/ |
| 6 | +import measure_theory.integral.set_integral |
| 7 | + |
| 8 | +/-! |
| 9 | +# Uniform integrability |
| 10 | +
|
| 11 | +This file will be used in the future to define uniform integrability. Uniform integrability |
| 12 | +is an important notion in both measure theory as well as probability theory. So far this file |
| 13 | +only contains the Egorov theorem which will be used to prove the Vitali convergence theorem |
| 14 | +which is one of the main results about uniform integrability. |
| 15 | +
|
| 16 | +## Main results |
| 17 | +
|
| 18 | +* `measure_theory.egorov`: Egorov's theorem which shows that a sequence of almost everywhere |
| 19 | + convergent functions converges uniformly except on an arbitrarily small set. |
| 20 | +
|
| 21 | +-/ |
| 22 | + |
| 23 | +noncomputable theory |
| 24 | +open_locale classical measure_theory nnreal ennreal topological_space |
| 25 | + |
| 26 | +namespace measure_theory |
| 27 | + |
| 28 | +open set filter topological_space |
| 29 | + |
| 30 | +variables {α β ι : Type*} {m : measurable_space α} [metric_space β] {μ : measure α} |
| 31 | + |
| 32 | +section |
| 33 | + |
| 34 | +/-! We will in this section prove Egorov's theorem. -/ |
| 35 | + |
| 36 | +namespace egorov |
| 37 | + |
| 38 | +/-- Given a sequence of functions `f` and a function `g`, `not_convergent_seq f g i j` is the |
| 39 | +set of elements such that `f k x` and `g x` are separated by at least `1 / (i + 1)` for some |
| 40 | +`k ≥ j`. |
| 41 | +
|
| 42 | +This definition is useful for Egorov's theorem. -/ |
| 43 | +def not_convergent_seq (f : ℕ → α → β) (g : α → β) (i j : ℕ) : set α := |
| 44 | +⋃ k (hk : j ≤ k), {x | (1 / (i + 1 : ℝ)) < dist (f k x) (g x)} |
| 45 | + |
| 46 | +variables {i j : ℕ} {s : set α} {ε : ℝ} {f : ℕ → α → β} {g : α → β} |
| 47 | + |
| 48 | +lemma mem_not_convergent_seq_iff {x : α} : x ∈ not_convergent_seq f g i j ↔ |
| 49 | + ∃ k (hk : j ≤ k), (1 / (i + 1 : ℝ)) < dist (f k x) (g x) := |
| 50 | +by { simp_rw [not_convergent_seq, mem_Union], refl } |
| 51 | + |
| 52 | +lemma not_convergent_seq_antitone : |
| 53 | + antitone (not_convergent_seq f g i) := |
| 54 | +λ j k hjk, bUnion_subset_bUnion (λ l hl, ⟨l, le_trans hjk hl, subset.refl _⟩) |
| 55 | + |
| 56 | +lemma measure_inter_not_convergent_seq_eq_zero |
| 57 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : |
| 58 | + μ (s ∩ ⋂ j, not_convergent_seq f g i j) = 0 := |
| 59 | +begin |
| 60 | + simp_rw [metric.tendsto_at_top, ae_iff] at hfg, |
| 61 | + rw [← nonpos_iff_eq_zero, ← hfg], |
| 62 | + refine measure_mono (λ x, _), |
| 63 | + simp only [mem_inter_eq, mem_Inter, ge_iff_le, mem_not_convergent_seq_iff], |
| 64 | + push_neg, |
| 65 | + rintro ⟨hmem, hx⟩, |
| 66 | + refine ⟨hmem, 1 / (i + 1 : ℝ), nat.one_div_pos_of_nat, λ N, _⟩, |
| 67 | + obtain ⟨n, hn₁, hn₂⟩ := hx N, |
| 68 | + exact ⟨n, hn₁, hn₂.le⟩ |
| 69 | +end |
| 70 | + |
| 71 | +variables [second_countable_topology β] [measurable_space β] [borel_space β] |
| 72 | + |
| 73 | +lemma not_convergent_seq_measurable_set |
| 74 | + (hf : ∀ n, measurable[m] (f n)) (hg : measurable g) : |
| 75 | + measurable_set (not_convergent_seq f g i j) := |
| 76 | +measurable_set.Union (λ k, measurable_set.Union_Prop $ λ hk, |
| 77 | + measurable_set_lt measurable_const $ (hf k).dist hg) |
| 78 | + |
| 79 | +lemma measure_not_convergent_seq_tendsto_zero |
| 80 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 81 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : |
| 82 | + tendsto (λ j, μ (s ∩ not_convergent_seq f g i j)) at_top (𝓝 0) := |
| 83 | +begin |
| 84 | + rw [← measure_inter_not_convergent_seq_eq_zero hfg, inter_Inter], |
| 85 | + exact tendsto_measure_Inter (λ n, hsm.inter $ not_convergent_seq_measurable_set hf hg) |
| 86 | + (λ k l hkl, inter_subset_inter_right _ $ not_convergent_seq_antitone hkl) |
| 87 | + ⟨0, (lt_of_le_of_lt (measure_mono $ inter_subset_left _ _) (lt_top_iff_ne_top.2 hs)).ne⟩ |
| 88 | +end |
| 89 | + |
| 90 | +lemma exists_not_convergent_seq_lt (hε : 0 < ε) |
| 91 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 92 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : |
| 93 | + ∃ j : ℕ, μ (s ∩ not_convergent_seq f g i j) ≤ ennreal.of_real (ε * 2⁻¹ ^ i) := |
| 94 | +begin |
| 95 | + obtain ⟨N, hN⟩ := (ennreal.tendsto_at_top ennreal.zero_ne_top).1 |
| 96 | + (measure_not_convergent_seq_tendsto_zero hf hg hsm hs hfg i) |
| 97 | + (ennreal.of_real (ε * 2⁻¹ ^ i)) _, |
| 98 | + { rw zero_add at hN, |
| 99 | + exact ⟨N, (hN N le_rfl).2⟩ }, |
| 100 | + { rw [gt_iff_lt, ennreal.of_real_pos], |
| 101 | + exact mul_pos hε (pow_pos (by norm_num) _) } |
| 102 | +end |
| 103 | + |
| 104 | +/-- Given some `ε > 0`, `not_convergent_seq_lt_index` provides the index such that |
| 105 | +`not_convergent_seq` (intersected with a set of finite measure) has measure less than |
| 106 | +`ε * 2⁻¹ ^ i`. |
| 107 | +
|
| 108 | +This definition is useful for Egorov's theorem. -/ |
| 109 | +def not_convergent_seq_lt_index (hε : 0 < ε) |
| 110 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 111 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : ℕ := |
| 112 | +classical.some $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg i |
| 113 | + |
| 114 | +lemma not_convergent_seq_lt_index_spec (hε : 0 < ε) |
| 115 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 116 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : |
| 117 | + μ (s ∩ not_convergent_seq f g i (not_convergent_seq_lt_index hε hf hg hsm hs hfg i)) ≤ |
| 118 | + ennreal.of_real (ε * 2⁻¹ ^ i) := |
| 119 | +classical.some_spec $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg i |
| 120 | + |
| 121 | +/-- Given some `ε > 0`, `Union_not_convergent_seq` is the union of `not_convergent_seq` with |
| 122 | +specific indicies such that `Union_not_convergent_seq` has measure less equal than `ε`. |
| 123 | +
|
| 124 | +This definition is useful for Egorov's theorem. -/ |
| 125 | +def Union_not_convergent_seq (hε : 0 < ε) |
| 126 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 127 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : set α := |
| 128 | +⋃ i, s ∩ not_convergent_seq f g i (not_convergent_seq_lt_index (half_pos hε) hf hg hsm hs hfg i) |
| 129 | + |
| 130 | +lemma Union_not_convergent_seq_measurable_set (hε : 0 < ε) |
| 131 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 132 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : |
| 133 | + measurable_set $ Union_not_convergent_seq hε hf hg hsm hs hfg := |
| 134 | +measurable_set.Union (λ n, hsm.inter $ not_convergent_seq_measurable_set hf hg) |
| 135 | + |
| 136 | +lemma measure_Union_not_convergent_seq (hε : 0 < ε) |
| 137 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 138 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : |
| 139 | + μ (Union_not_convergent_seq hε hf hg hsm hs hfg) ≤ ennreal.of_real ε := |
| 140 | +begin |
| 141 | + refine le_trans (measure_Union_le _) |
| 142 | + (le_trans (ennreal.tsum_le_tsum $ not_convergent_seq_lt_index_spec |
| 143 | + (half_pos hε) hf hg hsm hs hfg) _), |
| 144 | + simp_rw [ennreal.of_real_mul (half_pos hε).le], |
| 145 | + rw [ennreal.tsum_mul_left, ← ennreal.of_real_tsum_of_nonneg, inv_eq_one_div, |
| 146 | + tsum_geometric_two, ← ennreal.of_real_mul (half_pos hε).le, div_mul_cancel ε two_ne_zero], |
| 147 | + { exact le_rfl }, |
| 148 | + { exact λ n, pow_nonneg (by norm_num) _ }, |
| 149 | + { rw [inv_eq_one_div], |
| 150 | + exact summable_geometric_two }, |
| 151 | +end |
| 152 | + |
| 153 | +lemma Union_not_convergent_seq_subset (hε : 0 < ε) |
| 154 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 155 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : |
| 156 | + Union_not_convergent_seq hε hf hg hsm hs hfg ⊆ s := |
| 157 | +begin |
| 158 | + rw [Union_not_convergent_seq, ← inter_Union], |
| 159 | + exact inter_subset_left _ _, |
| 160 | +end |
| 161 | + |
| 162 | +lemma tendsto_uniformly_on_diff_Union_not_convergent_seq (hε : 0 < ε) |
| 163 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 164 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : |
| 165 | + tendsto_uniformly_on f g at_top (s \ egorov.Union_not_convergent_seq hε hf hg hsm hs hfg) := |
| 166 | +begin |
| 167 | + rw metric.tendsto_uniformly_on_iff, |
| 168 | + intros δ hδ, |
| 169 | + obtain ⟨N, hN⟩ := exists_nat_one_div_lt hδ, |
| 170 | + rw eventually_at_top, |
| 171 | + refine ⟨egorov.not_convergent_seq_lt_index (half_pos hε) hf hg hsm hs hfg N, λ n hn x hx, _⟩, |
| 172 | + simp only [mem_diff, egorov.Union_not_convergent_seq, not_exists, mem_Union, mem_inter_eq, |
| 173 | + not_and, exists_and_distrib_left] at hx, |
| 174 | + obtain ⟨hxs, hx⟩ := hx, |
| 175 | + specialize hx hxs N, |
| 176 | + rw egorov.mem_not_convergent_seq_iff at hx, |
| 177 | + push_neg at hx, |
| 178 | + rw dist_comm, |
| 179 | + exact lt_of_le_of_lt (hx n hn) hN, |
| 180 | +end |
| 181 | + |
| 182 | +end egorov |
| 183 | + |
| 184 | +variables [second_countable_topology β] [measurable_space β] [borel_space β] |
| 185 | + {f : ℕ → α → β} {g : α → β} {s : set α} |
| 186 | + |
| 187 | + |
| 188 | +/-- **Egorov's theorem**: If `f : ℕ → α → β` is a sequence of measurable functions that converges |
| 189 | +to `g : α → β` almost everywhere on a measurable set `s` of finite measure, then for all `ε > 0`, |
| 190 | +there exists a subset `t ⊆ s` such that `μ t ≤ ε` and `f` converges to `g` uniformly on `s \ t`. |
| 191 | +
|
| 192 | +In other words, a sequence of almost everywhere convergent functions converges uniformly except on |
| 193 | +an arbitrarily small set. -/ |
| 194 | +theorem tendsto_uniformly_on_of_ae_tendsto |
| 195 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞) |
| 196 | + (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) {ε : ℝ} (hε : 0 < ε) : |
| 197 | + ∃ t ⊆ s, measurable_set t ∧ μ t ≤ ennreal.of_real ε ∧ tendsto_uniformly_on f g at_top (s \ t) := |
| 198 | +⟨egorov.Union_not_convergent_seq hε hf hg hsm hs hfg, |
| 199 | + egorov.Union_not_convergent_seq_subset hε hf hg hsm hs hfg, |
| 200 | + egorov.Union_not_convergent_seq_measurable_set hε hf hg hsm hs hfg, |
| 201 | + egorov.measure_Union_not_convergent_seq hε hf hg hsm hs hfg, |
| 202 | + egorov.tendsto_uniformly_on_diff_Union_not_convergent_seq hε hf hg hsm hs hfg⟩ |
| 203 | + |
| 204 | +/-- Egorov's theorem for finite measure spaces. -/ |
| 205 | +lemma tendsto_uniformly_on_of_ae_tendsto' [is_finite_measure μ] |
| 206 | + (hf : ∀ n, measurable (f n)) (hg : measurable g) |
| 207 | + (hfg : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) {ε : ℝ} (hε : 0 < ε) : |
| 208 | + ∃ t, measurable_set t ∧ μ t ≤ ennreal.of_real ε ∧ tendsto_uniformly_on f g at_top tᶜ := |
| 209 | +begin |
| 210 | + obtain ⟨t, _, ht, htendsto⟩ := |
| 211 | + tendsto_uniformly_on_of_ae_tendsto hf hg measurable_set.univ (measure_ne_top μ univ) _ hε, |
| 212 | + { refine ⟨t, ht, _⟩, |
| 213 | + rwa compl_eq_univ_diff }, |
| 214 | + { filter_upwards [hfg], |
| 215 | + intros, |
| 216 | + assumption } |
| 217 | +end |
| 218 | + |
| 219 | +end |
| 220 | + |
| 221 | +end measure_theory |
0 commit comments