Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 11af02c

Browse files
committed
feat(analysis/convex): convex sets with zero (#8234)
Split off from #7288
1 parent 0821e6e commit 11af02c

File tree

1 file changed

+11
-0
lines changed

1 file changed

+11
-0
lines changed

src/analysis/convex/basic.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -277,6 +277,17 @@ lemma convex.add_smul_mem (h : convex s) {x y : E} (hx : x ∈ s) (hy : x + y
277277
{t : ℝ} (ht : t ∈ Icc (0 : ℝ) 1) : x + t • y ∈ s :=
278278
by { convert h.add_smul_sub_mem hx hy ht, abel }
279279

280+
lemma convex.smul_mem_of_zero_mem (h : convex s) {x : E} (zero_mem : (0:E) ∈ s) (hx : x ∈ s)
281+
{t : ℝ} (ht : t ∈ Icc (0 : ℝ) 1) : t • x ∈ s :=
282+
by simpa using h.add_smul_mem zero_mem (by simpa using hx) ht
283+
284+
lemma convex.mem_smul_of_zero_mem (h : convex s) {x : E} (zero_mem : (0:E) ∈ s) (hx : x ∈ s)
285+
{t : ℝ} (ht : 1 ≤ t) : x ∈ t • s :=
286+
begin
287+
rw mem_smul_set_iff_inv_smul_mem (zero_lt_one.trans_le ht).ne',
288+
exact h.smul_mem_of_zero_mem zero_mem hx ⟨inv_nonneg.2 (zero_le_one.trans ht), inv_le_one ht⟩,
289+
end
290+
280291
/-- Alternative definition of set convexity, in terms of pointwise set operations. -/
281292
lemma convex_iff_pointwise_add_subset:
282293
convex s ↔ ∀ ⦃a b : ℝ⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • s + b • s ⊆ s :=

0 commit comments

Comments
 (0)