@@ -374,7 +374,7 @@ end basic
374
374
375
375
section comp
376
376
377
- variables {a b c : ℝ} (f : ℝ → E)
377
+ variables {a b c d : ℝ} (f : ℝ → E)
378
378
379
379
@[simp] lemma integral_comp_mul_right (hc : c ≠ 0 ) :
380
380
∫ x in a..b, f (x * c) = c⁻¹ • ∫ x in a*c..b*c, f x :=
@@ -389,63 +389,107 @@ begin
389
389
{ simp [(show 0 < c, from h), mul_div_cancel, hc, abs_of_pos] }
390
390
end
391
391
392
+ @[simp] lemma integral_comp_mul_right' (c) :
393
+ c • ∫ x in a..b, f (x * c) = ∫ x in a*c..b*c, f x :=
394
+ by by_cases hc : c = 0 ; simp [hc]
395
+
392
396
@[simp] lemma integral_comp_mul_left (hc : c ≠ 0 ) :
393
397
∫ x in a..b, f (c * x) = c⁻¹ • ∫ x in c*a..c*b, f x :=
394
398
by simpa only [mul_comm c] using integral_comp_mul_right f hc
395
399
400
+ @[simp] lemma integral_comp_mul_left' (c) :
401
+ c • ∫ x in a..b, f (c * x) = ∫ x in c*a..c*b, f x :=
402
+ by by_cases hc : c = 0 ; simp [hc]
403
+
396
404
@[simp] lemma integral_comp_div (hc : c ≠ 0 ) :
397
405
∫ x in a..b, f (x / c) = c • ∫ x in a/c..b/c, f x :=
398
406
by simpa only [inv_inv'] using integral_comp_mul_right f (inv_ne_zero hc)
399
407
400
- @[simp] lemma integral_comp_add_right (d : ℝ) :
408
+ @[simp] lemma integral_comp_div' (c) :
409
+ c⁻¹ • ∫ x in a..b, f (x / c) = ∫ x in a/c..b/c, f x :=
410
+ by by_cases hc : c = 0 ; simp [hc]
411
+
412
+ @[simp] lemma integral_comp_add_right (d) :
401
413
∫ x in a..b, f (x + d) = ∫ x in a+d..b+d, f x :=
402
414
have A : closed_embedding (λ x, x + d) := (homeomorph.add_right d).closed_embedding,
403
415
calc ∫ x in a..b, f (x + d)
404
416
= ∫ x in a+d..b+d, f x ∂(measure.map (λ x, x + d) volume)
405
417
: by simp [interval_integral, set_integral_map_of_closed_embedding _ A]
406
418
... = ∫ x in a+d..b+d, f x : by rw [real.map_volume_add_right]
407
419
408
- @[simp] lemma integral_comp_mul_add (hc : c ≠ 0 ) (d : ℝ ) :
420
+ @[simp] lemma integral_comp_mul_add (hc : c ≠ 0 ) (d) :
409
421
∫ x in a..b, f (c * x + d) = c⁻¹ • ∫ x in c*a+d..c*b+d, f x :=
410
422
by rw [← integral_comp_add_right f d, ← integral_comp_mul_left _ hc]
411
423
412
- @[simp] lemma integral_comp_add_mul (hc : c ≠ 0 ) (d : ℝ) :
424
+ @[simp] lemma integral_comp_mul_add' (c d) :
425
+ c • ∫ x in a..b, f (c * x + d) = ∫ x in c*a+d..c*b+d, f x :=
426
+ by by_cases hc : c = 0 ; simp [hc]
427
+
428
+ @[simp] lemma integral_comp_add_mul (hc : c ≠ 0 ) (d) :
413
429
∫ x in a..b, f (d + c * x) = c⁻¹ • ∫ x in d+c*a..d+c*b, f x :=
414
430
by simpa only [add_comm] using integral_comp_mul_add f hc d
415
431
416
- @[simp] lemma integral_comp_div_add (hc : c ≠ 0 ) (d : ℝ) :
432
+ @[simp] lemma integral_comp_add_mul' (c d) :
433
+ c • ∫ x in a..b, f (d + c * x) = ∫ x in d+c*a..d+c*b, f x :=
434
+ by by_cases hc : c = 0 ; simp [hc]
435
+
436
+ @[simp] lemma integral_comp_div_add (hc : c ≠ 0 ) (d) :
417
437
∫ x in a..b, f (x / c + d) = c • ∫ x in a/c+d..b/c+d, f x :=
418
438
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_add f (inv_ne_zero hc) d
419
439
420
- @[simp] lemma integral_comp_add_div (hc : c ≠ 0 ) (d : ℝ) :
440
+ @[simp] lemma integral_comp_div_add' (c d) :
441
+ c⁻¹ • ∫ x in a..b, f (x / c + d) = ∫ x in a/c+d..b/c+d, f x :=
442
+ by by_cases hc : c = 0 ; simp [hc]
443
+
444
+ @[simp] lemma integral_comp_add_div (hc : c ≠ 0 ) (d) :
421
445
∫ x in a..b, f (d + x / c) = c • ∫ x in d+a/c..d+b/c, f x :=
422
446
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_add_mul f (inv_ne_zero hc) d
423
447
424
- @[simp] lemma integral_comp_mul_sub (hc : c ≠ 0 ) (d : ℝ) :
448
+ @[simp] lemma integral_comp_add_div' (c d) :
449
+ c⁻¹ • ∫ x in a..b, f (d + x / c) = ∫ x in d+a/c..d+b/c, f x :=
450
+ by by_cases hc : c = 0 ; simp [hc]
451
+
452
+ @[simp] lemma integral_comp_mul_sub (hc : c ≠ 0 ) (d) :
425
453
∫ x in a..b, f (c * x - d) = c⁻¹ • ∫ x in c*a-d..c*b-d, f x :=
426
454
by simpa only [sub_eq_add_neg] using integral_comp_mul_add f hc (-d)
427
455
428
- @[simp] lemma integral_comp_sub_mul (hc : c ≠ 0 ) (d : ℝ) :
456
+ @[simp] lemma integral_comp_mul_sub' (c d) :
457
+ c • ∫ x in a..b, f (c * x - d) = ∫ x in c*a-d..c*b-d, f x :=
458
+ by by_cases hc : c = 0 ; simp [hc]
459
+
460
+ @[simp] lemma integral_comp_sub_mul (hc : c ≠ 0 ) (d) :
429
461
∫ x in a..b, f (d - c * x) = c⁻¹ • ∫ x in d-c*b..d-c*a, f x :=
430
462
begin
431
463
simp only [sub_eq_add_neg, neg_mul_eq_neg_mul],
432
464
rw [integral_comp_add_mul f (neg_ne_zero.mpr hc) d, integral_symm],
433
465
simp only [inv_neg, smul_neg, neg_neg, neg_smul],
434
466
end
435
467
436
- @[simp] lemma integral_comp_div_sub (hc : c ≠ 0 ) (d : ℝ) :
468
+ @[simp] lemma integral_comp_sub_mul' (c d) :
469
+ c • ∫ x in a..b, f (d - c * x) = ∫ x in d-c*b..d-c*a, f x :=
470
+ by by_cases hc : c = 0 ; simp [hc]
471
+
472
+ @[simp] lemma integral_comp_div_sub (hc : c ≠ 0 ) (d) :
437
473
∫ x in a..b, f (x / c - d) = c • ∫ x in a/c-d..b/c-d, f x :=
438
474
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_sub f (inv_ne_zero hc) d
439
475
440
- @[simp] lemma integral_comp_sub_div (hc : c ≠ 0 ) (d : ℝ) :
476
+ @[simp] lemma integral_comp_div_sub' (c d) :
477
+ c⁻¹ • ∫ x in a..b, f (x / c - d) = ∫ x in a/c-d..b/c-d, f x :=
478
+ by by_cases hc : c = 0 ; simp [hc]
479
+
480
+ @[simp] lemma integral_comp_sub_div (hc : c ≠ 0 ) (d) :
441
481
∫ x in a..b, f (d - x / c) = c • ∫ x in d-b/c..d-a/c, f x :=
442
482
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_sub_mul f (inv_ne_zero hc) d
443
483
444
- @[simp] lemma integral_comp_sub_right (d : ℝ) :
484
+ @[simp] lemma integral_comp_sub_div' (c d) :
485
+ c⁻¹ • ∫ x in a..b, f (d - x / c) = ∫ x in d-b/c..d-a/c, f x :=
486
+ by by_cases hc : c = 0 ; simp [hc]
487
+
488
+ @[simp] lemma integral_comp_sub_right (d) :
445
489
∫ x in a..b, f (x - d) = ∫ x in a-d..b-d, f x :=
446
490
by simpa only [sub_eq_add_neg] using integral_comp_add_right f (-d)
447
491
448
- @[simp] lemma integral_comp_sub_left (d : ℝ ) :
492
+ @[simp] lemma integral_comp_sub_left (d) :
449
493
∫ x in a..b, f (d - x) = ∫ x in d-b..d-a, f x :=
450
494
by simpa only [one_mul, one_smul, inv_one] using integral_comp_sub_mul f one_ne_zero d
451
495
0 commit comments