Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 152ad1f

Browse files
committed
feat(measure_theory/measure_space): add theorems about restrict and subtraction (#5000)
This is the next tranche of theorems toward Lebesgue-Radon-Nikodym.
1 parent dd13f00 commit 152ad1f

File tree

1 file changed

+67
-0
lines changed

1 file changed

+67
-0
lines changed

src/measure_theory/measure_space.lean

Lines changed: 67 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -877,6 +877,12 @@ rfl
877877
@[simp] lemma restrict_apply (ht : measurable_set t) : μ.restrict s t = μ (t ∩ s) :=
878878
by simp [← restrictₗ_apply, restrictₗ, ht]
879879

880+
lemma restrict_eq_self (h_meas_t : measurable_set t) (h : t ⊆ s) : μ.restrict s t = μ t :=
881+
by rw [restrict_apply h_meas_t, subset_iff_inter_eq_left.1 h]
882+
883+
lemma restrict_apply_self (μ:measure α) (h_meas_s : measurable_set s) :
884+
(μ.restrict s) s = μ s := (restrict_eq_self h_meas_s (set.subset.refl _))
885+
880886
lemma restrict_apply_univ (s : set α) : μ.restrict s univ = μ s :=
881887
by rw [restrict_apply measurable_set.univ, set.univ_inter]
882888

@@ -1929,6 +1935,67 @@ end
19291935

19301936
end measure_sub
19311937

1938+
lemma restrict_sub_eq_restrict_sub_restrict (h_meas_s : measurable_set s) :
1939+
(μ - ν).restrict s = (μ.restrict s) - (ν.restrict s) :=
1940+
begin
1941+
repeat {rw sub_def},
1942+
have h_nonempty : {d | μ ≤ d + ν}.nonempty,
1943+
{ apply @set.nonempty_of_mem _ _ μ, rw mem_set_of_eq, intros t h_meas,
1944+
apply le_add_right (le_refl (μ t)) },
1945+
rw restrict_Inf_eq_Inf_restrict h_nonempty h_meas_s,
1946+
apply le_antisymm,
1947+
{ apply @Inf_le_Inf_of_forall_exists_le (measure α) _,
1948+
intros ν' h_ν'_in, rw mem_set_of_eq at h_ν'_in, apply exists.intro (ν'.restrict s),
1949+
split,
1950+
{ rw mem_image, apply exists.intro (ν' + (⊤ : measure_theory.measure α).restrict sᶜ),
1951+
rw mem_set_of_eq,
1952+
split,
1953+
{ rw [add_assoc, add_comm _ ν, ← add_assoc, measure_theory.measure.le_iff],
1954+
intros t h_meas_t,
1955+
have h_inter_inter_eq_inter : ∀ t' : set α , t ∩ t' ∩ t' = t ∩ t',
1956+
{ intro t', rw set.inter_eq_self_of_subset_left, apply set.inter_subset_right t t' },
1957+
have h_meas_t_inter_s : measurable_set (t ∩ s) :=
1958+
h_meas_t.inter h_meas_s,
1959+
repeat {rw measure_eq_inter_diff h_meas_t h_meas_s, rw set.diff_eq},
1960+
apply add_le_add _ _; rw add_apply,
1961+
{ apply le_add_right _,
1962+
rw add_apply,
1963+
rw ← @restrict_eq_self _ _ μ s _ h_meas_t_inter_s (set.inter_subset_right _ _),
1964+
rw ← @restrict_eq_self _ _ ν s _ h_meas_t_inter_s (set.inter_subset_right _ _),
1965+
apply h_ν'_in _ h_meas_t_inter_s },
1966+
cases (@set.eq_empty_or_nonempty _ (t ∩ sᶜ)) with h_inter_empty h_inter_nonempty,
1967+
{ simp [h_inter_empty] },
1968+
{ have h_meas_inter_compl :=
1969+
h_meas_t.inter (measurable_set.compl h_meas_s),
1970+
rw [restrict_apply h_meas_inter_compl, h_inter_inter_eq_inter sᶜ],
1971+
have h_mu_le_add_top : μ ≤ ν' + ν + ⊤,
1972+
{ rw add_comm,
1973+
have h_le_top : μ ≤ ⊤ := le_top,
1974+
apply (λ t₂ h_meas, le_add_right (h_le_top t₂ h_meas)) },
1975+
apply h_mu_le_add_top _ h_meas_inter_compl } },
1976+
{ ext1 t h_meas_t,
1977+
simp [restrict_apply h_meas_t,
1978+
restrict_apply (h_meas_t.inter h_meas_s),
1979+
set.inter_assoc] } },
1980+
{ apply restrict_le_self } },
1981+
{ apply @Inf_le_Inf_of_forall_exists_le (measure α) _,
1982+
1983+
intros s h_s_in, cases h_s_in with t h_t, cases h_t with h_t_in h_t_eq, subst s,
1984+
apply exists.intro (t.restrict s), split,
1985+
{ rw [set.mem_set_of_eq, ← restrict_add],
1986+
apply restrict_mono (set.subset.refl _) h_t_in },
1987+
{ apply le_refl _ } },
1988+
end
1989+
1990+
lemma sub_apply_eq_zero_of_restrict_le_restrict
1991+
(h_le : μ.restrict s ≤ ν.restrict s) (h_meas_s : measurable_set s) :
1992+
(μ - ν) s = 0 :=
1993+
begin
1994+
rw [← restrict_apply_self _ h_meas_s, restrict_sub_eq_restrict_sub_restrict,
1995+
sub_eq_zero_of_le],
1996+
repeat {simp [*]},
1997+
end
1998+
19321999
end measure
19332000

19342001
end measure_theory

0 commit comments

Comments
 (0)