Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 154d73d

Browse files
committed
feat(category_theory/equivalence): equivalence of functor categories (#4940)
1 parent a0341a8 commit 154d73d

File tree

1 file changed

+21
-1
lines changed

1 file changed

+21
-1
lines changed

src/category_theory/equivalence.lean

Lines changed: 21 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -270,7 +270,27 @@ by { dsimp [inv_fun_id_assoc], tidy }
270270
(inv_fun_id_assoc e F).inv.app X = F.map (e.counit_inv.app X) :=
271271
by { dsimp [inv_fun_id_assoc], tidy }
272272

273-
273+
/-- If `C` is equivalent to `D`, then `C ⥤ E` is equivalent to `D ⥤ E`. -/
274+
@[simps {rhs_md:=semireducible}]
275+
def congr_left (e : C ≌ D) : (C ⥤ E) ≌ (D ⥤ E) :=
276+
equivalence.mk
277+
((whiskering_left _ _ _).obj e.inverse)
278+
((whiskering_left _ _ _).obj e.functor)
279+
(nat_iso.of_components (λ F, (e.fun_inv_id_assoc F).symm) (by tidy))
280+
(nat_iso.of_components (λ F, e.inv_fun_id_assoc F) (by tidy))
281+
282+
/-- If `C` is equivalent to `D`, then `E ⥤ C` is equivalent to `E ⥤ D`. -/
283+
@[simps {rhs_md:=semireducible}]
284+
def congr_right (e : C ≌ D) : (E ⥤ C) ≌ (E ⥤ D) :=
285+
equivalence.mk
286+
((whiskering_right _ _ _).obj e.functor)
287+
((whiskering_right _ _ _).obj e.inverse)
288+
(nat_iso.of_components
289+
(λ F, F.right_unitor.symm ≪≫ iso_whisker_left F e.unit_iso ≪≫ functor.associator _ _ _)
290+
(by tidy))
291+
(nat_iso.of_components
292+
(λ F, functor.associator _ _ _ ≪≫ iso_whisker_left F e.counit_iso ≪≫ F.right_unitor)
293+
(by tidy))
274294

275295
section cancellation_lemmas
276296
variables (e : C ≌ D)

0 commit comments

Comments
 (0)