This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +21
-1
lines changed Expand file tree Collapse file tree 1 file changed +21
-1
lines changed Original file line number Diff line number Diff line change @@ -270,7 +270,27 @@ by { dsimp [inv_fun_id_assoc], tidy }
270
270
(inv_fun_id_assoc e F).inv.app X = F.map (e.counit_inv.app X) :=
271
271
by { dsimp [inv_fun_id_assoc], tidy }
272
272
273
-
273
+ /-- If `C` is equivalent to `D`, then `C ⥤ E` is equivalent to `D ⥤ E`. -/
274
+ @[simps {rhs_md:=semireducible}]
275
+ def congr_left (e : C ≌ D) : (C ⥤ E) ≌ (D ⥤ E) :=
276
+ equivalence.mk
277
+ ((whiskering_left _ _ _).obj e.inverse)
278
+ ((whiskering_left _ _ _).obj e.functor)
279
+ (nat_iso.of_components (λ F, (e.fun_inv_id_assoc F).symm) (by tidy))
280
+ (nat_iso.of_components (λ F, e.inv_fun_id_assoc F) (by tidy))
281
+
282
+ /-- If `C` is equivalent to `D`, then `E ⥤ C` is equivalent to `E ⥤ D`. -/
283
+ @[simps {rhs_md:=semireducible}]
284
+ def congr_right (e : C ≌ D) : (E ⥤ C) ≌ (E ⥤ D) :=
285
+ equivalence.mk
286
+ ((whiskering_right _ _ _).obj e.functor)
287
+ ((whiskering_right _ _ _).obj e.inverse)
288
+ (nat_iso.of_components
289
+ (λ F, F.right_unitor.symm ≪≫ iso_whisker_left F e.unit_iso ≪≫ functor.associator _ _ _)
290
+ (by tidy))
291
+ (nat_iso.of_components
292
+ (λ F, functor.associator _ _ _ ≪≫ iso_whisker_left F e.counit_iso ≪≫ F.right_unitor)
293
+ (by tidy))
274
294
275
295
section cancellation_lemmas
276
296
variables (e : C ≌ D)
You can’t perform that action at this time.
0 commit comments