This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +15
-3
lines changed Expand file tree Collapse file tree 1 file changed +15
-3
lines changed Original file line number Diff line number Diff line change @@ -8,7 +8,7 @@ Subtype of open subsets in a topological space.
8
8
import topology.bases topology.subset_properties topology.constructions
9
9
10
10
open filter lattice
11
- variables {α : Type *} [topological_space α]
11
+ variables {α : Type *} {β : Type *} [topological_space α] [topological_space β ]
12
12
13
13
namespace topological_space
14
14
variable (α)
@@ -23,7 +23,6 @@ non-emptiness will be useful in metric spaces, as we will be able to put
23
23
a distance (and not merely an edistance) on this space. -/
24
24
def nonempty_compacts := {s : set α // s ≠ ∅ ∧ compact s}
25
25
26
-
27
26
section nonempty_compacts
28
27
open topological_space set
29
28
variable {α}
@@ -50,7 +49,6 @@ instance : has_subset (opens α) :=
50
49
instance : has_mem α (opens α) :=
51
50
{ mem := λ a U, a ∈ U.val }
52
51
53
-
54
52
@[extensionality] lemma ext {U V : opens α} (h : U.val = V.val) : U = V := subtype.ext.mpr h
55
53
56
54
instance : partial_order (opens α) := subtype.partial_order _
164
162
end opens
165
163
166
164
end topological_space
165
+
166
+ namespace continuous
167
+ open topological_space
168
+
169
+ def comap {f : α → β} (hf : continuous f) (V : opens β) : opens α :=
170
+ ⟨f ⁻¹' V.1 , hf V.1 V.2 ⟩
171
+
172
+ @[simp] lemma comap_id (U : opens α) : (continuous_id).comap U = U := by { ext, refl }
173
+
174
+ lemma comap_mono {f : α → β} (hf : continuous f) {V W : opens β} (hVW : V ⊆ W) :
175
+ hf.comap V ⊆ hf.comap W :=
176
+ λ _ h, hVW h
177
+
178
+ end continuous
You can’t perform that action at this time.
0 commit comments