@@ -1586,6 +1586,52 @@ begin
1586
1586
exact ennreal.sub_add_cancel_of_le hx
1587
1587
end
1588
1588
1589
+ lemma lintegral_sub_le (f g : α → ℝ≥0 ∞)
1590
+ (hf : measurable f) (hg : measurable g) (h : f ≤ᵐ[μ] g) :
1591
+ ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
1592
+ begin
1593
+ by_cases hfi : ∫⁻ x, f x ∂μ = ∞,
1594
+ { rw [hfi, ennreal.sub_top],
1595
+ exact bot_le },
1596
+ { rw lintegral_sub hg hf hfi h,
1597
+ refl' }
1598
+ end
1599
+
1600
+ lemma lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0 ∞}
1601
+ (hf : measurable f) (hg : measurable g) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g)
1602
+ {s : set α} (hμs : μ s ≠ 0 ) (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) :
1603
+ ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
1604
+ begin
1605
+ rw [← ennreal.sub_pos, ← lintegral_sub hg hf hfi h_le],
1606
+ by_contra hnlt,
1607
+ rw [not_lt, nonpos_iff_eq_zero, lintegral_eq_zero_iff (hg.sub hf), filter.eventually_eq] at hnlt,
1608
+ simp only [ae_iff, ennreal.sub_eq_zero_iff_le, pi.zero_apply, not_lt, not_le] at hnlt h,
1609
+ refine hμs _,
1610
+ push_neg at h,
1611
+ have hs_eq : s = {a : α | a ∈ s ∧ g a ≤ f a} ∪ {a : α | a ∈ s ∧ f a < g a},
1612
+ { ext1 x,
1613
+ simp_rw [set.mem_union, set.mem_set_of_eq, ← not_le],
1614
+ tauto, },
1615
+ rw hs_eq,
1616
+ refine measure_union_null h (measure_mono_null _ hnlt),
1617
+ simp,
1618
+ end
1619
+
1620
+ lemma lintegral_strict_mono {f g : α → ℝ≥0 ∞} (hμ : μ ≠ 0 )
1621
+ (hf : measurable f) (hg : measurable g) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) :
1622
+ ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
1623
+ begin
1624
+ rw [ne.def, ← measure.measure_univ_eq_zero] at hμ,
1625
+ refine lintegral_strict_mono_of_ae_le_of_ae_lt_on hf hg hfi (ae_le_of_ae_lt h) hμ _,
1626
+ simpa using h,
1627
+ end
1628
+
1629
+ lemma set_lintegral_strict_mono {f g : α → ℝ≥0 ∞} {s : set α}
1630
+ (hsm : measurable_set s) (hs : μ s ≠ 0 ) (hf : measurable f) (hg : measurable g)
1631
+ (hfi : ∫⁻ x in s, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) :
1632
+ ∫⁻ x in s, f x ∂μ < ∫⁻ x in s, g x ∂μ :=
1633
+ lintegral_strict_mono (by simp [hs]) hf hg hfi ((ae_restrict_iff' hsm).mpr h)
1634
+
1589
1635
/-- Monotone convergence theorem for nonincreasing sequences of functions -/
1590
1636
lemma lintegral_infi_ae
1591
1637
{f : ℕ → α → ℝ≥0 ∞} (h_meas : ∀n, measurable (f n))
0 commit comments