Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1741207

Browse files
committed
feat(analysis/normed_space/exponential): Aeᴮ = eᴮA if AB = BA (#13881)
This commit shows that the exponenential commutes if the exponent does. This generalizes a previous weaker result.
1 parent c44091f commit 1741207

File tree

2 files changed

+23
-4
lines changed

2 files changed

+23
-4
lines changed

src/analysis/normed_space/exponential.lean

Lines changed: 14 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -123,6 +123,20 @@ begin
123123
simp [h]
124124
end
125125

126+
variables (𝕂)
127+
128+
lemma commute.exp_right [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute x (exp 𝕂 𝔸 y) :=
129+
begin
130+
rw exp_eq_tsum,
131+
exact commute.tsum_right x (λ n, (h.pow_right n).smul_right _),
132+
end
133+
134+
lemma commute.exp_left [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 𝔸 x) y :=
135+
(h.symm.exp_right 𝕂).symm
136+
137+
lemma commute.exp [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 𝔸 x) (exp 𝕂 𝔸 y) :=
138+
(h.exp_left _).exp_right _
139+
126140
end topological_algebra
127141

128142
section normed
@@ -421,10 +435,6 @@ begin
421435
exact ring.inverse_invertible _,
422436
end
423437

424-
lemma commute.exp {x y : 𝔸} (h : commute x y) :
425-
commute (exp 𝕂 𝔸 x) (exp 𝕂 𝔸 y) :=
426-
(exp_add_of_commute h).symm.trans $ (congr_arg _ $ add_comm _ _).trans (exp_add_of_commute h.symm)
427-
428438
end
429439

430440
/-- In a Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = ℂ`, if a family of elements `f i` mutually

src/topology/algebra/infinite_sum.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -777,6 +777,15 @@ lemma summable.tsum_mul_left (a) (hf : summable f) : ∑'b, a * f b = a * ∑'b,
777777
lemma summable.tsum_mul_right (a) (hf : summable f) : (∑'b, f b * a) = (∑'b, f b) * a :=
778778
(hf.has_sum.mul_right _).tsum_eq
779779

780+
lemma commute.tsum_right (a) (h : ∀ b, commute a (f b)) : commute a (∑' b, f b) :=
781+
if hf : summable f then
782+
(hf.tsum_mul_left a).symm.trans ((congr_arg _ $ funext h).trans (hf.tsum_mul_right a))
783+
else
784+
(tsum_eq_zero_of_not_summable hf).symm ▸ commute.zero_right _
785+
786+
lemma commute.tsum_left (a) (h : ∀ b, commute (f b) a) : commute (∑' b, f b) a :=
787+
(commute.tsum_right _ $ λ b, (h b).symm).symm
788+
780789
end tsum
781790

782791
end topological_semiring

0 commit comments

Comments
 (0)