Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 178e746

Browse files
committed
rename towards -> tendsto
1 parent 2ac1f20 commit 178e746

File tree

5 files changed

+197
-195
lines changed

5 files changed

+197
-195
lines changed

algebra/lattice/filter.lean

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -975,46 +975,46 @@ le_antisymm
975975

976976
end vmap
977977

978-
/- towards -/
979-
def towards (f : α → β) (l₁ : filter α) (l₂ : filter β) := filter.map f l₁ ≤ l₂
978+
/- tendsto -/
979+
def tendsto (f : α → β) (l₁ : filter α) (l₂ : filter β) := filter.map f l₁ ≤ l₂
980980

981-
lemma towards_cong {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β}
982-
(h : towards f₁ l₁ l₂) (hl : {x | f₁ x = f₂ x} ∈ l₁.sets) : towards f₂ l₁ l₂ :=
983-
by rwa [towards, ←map_cong hl]
981+
lemma tendsto_cong {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β}
982+
(h : tendsto f₁ l₁ l₂) (hl : {x | f₁ x = f₂ x} ∈ l₁.sets) : tendsto f₂ l₁ l₂ :=
983+
by rwa [tendsto, ←map_cong hl]
984984

985-
lemma towards_id' {x y : filter α} : x ≤ y → towards id x y :=
986-
by simp [towards] { contextual := tt }
985+
lemma tendsto_id' {x y : filter α} : x ≤ y → tendsto id x y :=
986+
by simp [tendsto] { contextual := tt }
987987

988-
lemma towards_id {x : filter α} : towards id x x := towards_id' $ le_refl x
988+
lemma tendsto_id {x : filter α} : tendsto id x x := tendsto_id' $ le_refl x
989989

990-
lemma towards_compose {f : α → β} {g : β → γ} {x : filter α} {y : filter β} {z : filter γ}
991-
(hf : towards f x y) (hg : towards g y z) : towards (g ∘ f) x z :=
990+
lemma tendsto_compose {f : α → β} {g : β → γ} {x : filter α} {y : filter β} {z : filter γ}
991+
(hf : tendsto f x y) (hg : tendsto g y z) : tendsto (g ∘ f) x z :=
992992
calc map (g ∘ f) x = map g (map f x) : by rw [map_map]
993993
... ≤ map g y : map_mono hf
994994
... ≤ z : hg
995995

996-
lemma towards_map {f : α → β} {x : filter α} : towards f x (map f x) := le_refl (map f x)
996+
lemma tendsto_map {f : α → β} {x : filter α} : tendsto f x (map f x) := le_refl (map f x)
997997

998-
lemma towards_map' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ}
999-
(h : towards (f ∘ g) x y) : towards f (map g x) y :=
1000-
by rwa [towards, map_map]
998+
lemma tendsto_map' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ}
999+
(h : tendsto (f ∘ g) x y) : tendsto f (map g x) y :=
1000+
by rwa [tendsto, map_map]
10011001

1002-
lemma towards_vmap {f : α → β} {x : filter β} : towards f (vmap f x) x :=
1002+
lemma tendsto_vmap {f : α → β} {x : filter β} : tendsto f (vmap f x) x :=
10031003
map_vmap_le
10041004

1005-
lemma towards_vmap' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ}
1006-
(h : towards (f ∘ g) x y) : towards g x (vmap f y) :=
1005+
lemma tendsto_vmap' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ}
1006+
(h : tendsto (f ∘ g) x y) : tendsto g x (vmap f y) :=
10071007
le_vmap_iff_map_le.mpr $ by rwa [map_map]
10081008

1009-
lemma towards_vmap'' {m : α → β} {f : filter α} {g : filter β} (s : set α)
1009+
lemma tendsto_vmap'' {m : α → β} {f : filter α} {g : filter β} (s : set α)
10101010
{i : γ → α} (hs : s ∈ f.sets) (hi : ∀a∈s, ∃c, i c = a)
1011-
(h : towards (m ∘ i) (vmap i f) g) : towards m f g :=
1012-
have towards m (map i $ vmap i $ f) g,
1013-
by rwa [towards, ←map_compose] at h,
1011+
(h : tendsto (m ∘ i) (vmap i f) g) : tendsto m f g :=
1012+
have tendsto m (map i $ vmap i $ f) g,
1013+
by rwa [tendsto, ←map_compose] at h,
10141014
le_trans (map_mono $ le_map_vmap' hs hi) this
10151015

1016-
lemma towards_inf {f : α → β} {x : filter α} {y₁ y₂ : filter β}
1017-
(h₁ : towards f x y₁) (h₂ : towards f x y₂) : towards f x (y₁ ⊓ y₂) :=
1016+
lemma tendsto_inf {f : α → β} {x : filter α} {y₁ y₂ : filter β}
1017+
(h₁ : tendsto f x y₁) (h₂ : tendsto f x y₂) : tendsto f x (y₁ ⊓ y₂) :=
10181018
le_inf h₁ h₂
10191019

10201020
section lift
@@ -1382,16 +1382,16 @@ begin
13821382
assume x, set.monotone_prod monotone_id monotone_const)
13831383
end
13841384

1385-
lemma towards_fst {f : filter α} {g : filter β} : towards prod.fst (filter.prod f g) f :=
1385+
lemma tendsto_fst {f : filter α} {g : filter β} : tendsto prod.fst (filter.prod f g) f :=
13861386
assume s hs, (filter.prod f g).upwards_sets (prod_mem_prod hs univ_mem_sets) $
13871387
show set.prod s univ ⊆ preimage prod.fst s, by simp [set.prod, preimage] {contextual := tt}
13881388

1389-
lemma towards_snd {f : filter α} {g : filter β} : towards prod.snd (filter.prod f g) g :=
1389+
lemma tendsto_snd {f : filter α} {g : filter β} : tendsto prod.snd (filter.prod f g) g :=
13901390
assume s hs, (filter.prod f g).upwards_sets (prod_mem_prod univ_mem_sets hs) $
13911391
show set.prod univ s ⊆ preimage prod.snd s, by simp [set.prod, preimage] {contextual := tt}
13921392

1393-
lemma towards_prod_mk {f : filter α} {g : filter β} {h : filter γ} {m₁ : α → β} {m₂ : α → γ}
1394-
(h₁ : towards m₁ f g) (h₂ : towards m₂ f h) : towards (λx, (m₁ x, m₂ x)) f (filter.prod g h) :=
1393+
lemma tendsto_prod_mk {f : filter α} {g : filter β} {h : filter γ} {m₁ : α → β} {m₂ : α → γ}
1394+
(h₁ : tendsto m₁ f g) (h₂ : tendsto m₂ f h) : tendsto (λx, (m₁ x, m₂ x)) f (filter.prod g h) :=
13951395
assume s hs,
13961396
let ⟨s₁, hs₁, s₂, hs₂, h⟩ := mem_prod_iff.mp hs in
13971397
f.upwards_sets (inter_mem_sets (h₁ hs₁) (h₂ hs₂)) $
@@ -1408,7 +1408,7 @@ le_antisymm
14081408
calc set.prod (m₁ '' s₁) (m₂ '' s₂) = (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) '' set.prod s₁ s₂ :
14091409
set.prod_image_image_eq
14101410
... ⊆ _ : by rwa [image_subset_iff_subset_preimage])
1411-
(towards_prod_mk (towards_compose towards_fst (le_refl _)) (towards_compose towards_snd (le_refl _)))
1411+
(tendsto_prod_mk (tendsto_compose tendsto_fst (le_refl _)) (tendsto_compose tendsto_snd (le_refl _)))
14121412

14131413
lemma prod_vmap_vmap_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x}
14141414
{f₁ : filter α₁} {f₂ : filter α₂} {m₁ : β₁ → α₁} {m₂ : β₂ → α₂} :

topology/continuity.lean

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -45,22 +45,22 @@ lemma continuous_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg
4545
continuous (g ∘ f) :=
4646
assume s h, hf _ (hg s h)
4747

48-
lemma continuous_iff_towards {f : α → β} :
49-
continuous f ↔ (∀x, towards f (nhds x) (nhds (f x))) :=
48+
lemma continuous_iff_tendsto {f : α → β} :
49+
continuous f ↔ (∀x, tendsto f (nhds x) (nhds (f x))) :=
5050
⟨assume hf : continuous f, assume x s,
5151
show s ∈ (nhds (f x)).sets → s ∈ (map f (nhds x)).sets,
5252
by simp [nhds_sets];
5353
exact assume ⟨t, t_open, t_subset, fx_in_t⟩,
5454
⟨preimage f t, hf t t_open, fx_in_t, preimage_mono t_subset⟩,
55-
assume hf : ∀x, towards f (nhds x) (nhds (f x)),
55+
assume hf : ∀x, tendsto f (nhds x) (nhds (f x)),
5656
assume s, assume hs : is_open s,
5757
have ∀a, f a ∈ s → s ∈ (nhds (f a)).sets,
5858
by simp [nhds_sets]; exact assume a ha, ⟨s, hs, subset.refl s, ha⟩,
5959
show is_open (preimage f s),
6060
by simp [is_open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
6161

6262
lemma continuous_const [topological_space α] [topological_space β] {b : β} : continuous (λa:α, b) :=
63-
continuous_iff_towards.mpr $ assume a, towards_const_nhds
63+
continuous_iff_tendsto.mpr $ assume a, tendsto_const_nhds
6464

6565
lemma continuous_iff_is_closed {f : α → β} :
6666
continuous f ↔ (∀s, is_closed s → is_closed (preimage f s)) :=
@@ -75,7 +75,7 @@ have ∀ (a : α), nhds a ⊓ principal s ≠ ⊥ → nhds (f a) ⊓ principal (
7575
by rwa[map_eq_bot_iff],
7676
have h₂ : map f (nhds a ⊓ principal s) ≤ nhds (f a) ⊓ principal (f '' s),
7777
from le_inf
78-
(le_trans (map_mono inf_le_left) $ by rw [continuous_iff_towards] at h; exact h a)
78+
(le_trans (map_mono inf_le_left) $ by rw [continuous_iff_tendsto] at h; exact h a)
7979
(le_trans (map_mono inf_le_right) $ by simp; exact subset.refl _),
8080
neq_bot_of_le_neq_bot h₁ h₂,
8181
by simp [image_subset_iff_subset_preimage, closure_eq_nhds]; assumption
@@ -292,7 +292,7 @@ le_antisymm
292292
lemma map_nhds_induced_eq {a : α} (h : image f univ ∈ (nhds (f a)).sets) :
293293
map f (@nhds α (induced f t) a) = nhds (f a) :=
294294
le_antisymm
295-
((@continuous_iff_towards α β (induced f t) _ _).mp continuous_induced_dom a)
295+
((@continuous_iff_tendsto α β (induced f t) _ _).mp continuous_induced_dom a)
296296
(assume s, assume hs : preimage f s ∈ (@nhds α (induced f t) a).sets,
297297
let ⟨t', t_subset, is_open_t, a_in_t⟩ := mem_nhds_sets_iff.mp h in
298298
let ⟨s', s'_subset, ⟨s'', is_open_s'', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
@@ -426,13 +426,13 @@ end sum
426426
section subtype
427427
variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop}
428428

429-
lemma towards_nhds_iff_of_embedding {f : α → β} {g : β → γ} {a : filter α} {b : β} (hg : embedding g) :
430-
towards f a (nhds b) ↔ towards (g ∘ f) a (nhds (g b)) :=
431-
by rw [towards, towards, hg.right, nhds_induced_eq_vmap, le_vmap_iff_map_le, map_map]
429+
lemma tendsto_nhds_iff_of_embedding {f : α → β} {g : β → γ} {a : filter α} {b : β} (hg : embedding g) :
430+
tendsto f a (nhds b) ↔ tendsto (g ∘ f) a (nhds (g b)) :=
431+
by rw [tendsto, tendsto, hg.right, nhds_induced_eq_vmap, le_vmap_iff_map_le, map_map]
432432

433433
lemma continuous_iff_of_embedding {f : α → β} {g : β → γ} (hg : embedding g) :
434434
continuous f ↔ continuous (g ∘ f) :=
435-
by simp [continuous_iff_towards, @towards_nhds_iff_of_embedding α β γ _ _ _ f g _ _ hg]
435+
by simp [continuous_iff_tendsto, @tendsto_nhds_iff_of_embedding α β γ _ _ _ f g _ _ hg]
436436

437437
lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λx, (x, f x)) :=
438438
embedding_of_embedding_compose (continuous_prod_mk continuous_id hf) continuous_fst embedding_id
@@ -459,13 +459,13 @@ lemma continuous_subtype_nhds_cover {f : α → β} {c : ι → α → Prop}
459459
(c_cover : ∀x:α, ∃i, {x | c i x} ∈ (nhds x).sets)
460460
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
461461
continuous f :=
462-
continuous_iff_towards.mpr $ assume x,
462+
continuous_iff_tendsto.mpr $ assume x,
463463
let ⟨i, (c_sets : {x | c i x} ∈ (nhds x).sets)⟩ := c_cover x in
464464
let x' : subtype (c i) := ⟨x, mem_of_nhds c_sets⟩ in
465465
calc map f (nhds x) = map f (map subtype.val (nhds x')) :
466466
congr_arg (map f) (map_nhds_subtype_val_eq _ $ c_sets).symm
467467
... = map (λx:subtype (c i), f x.val) (nhds x') : rfl
468-
... ≤ nhds (f x) : continuous_iff_towards.mp (f_cont i) x'
468+
... ≤ nhds (f x) : continuous_iff_tendsto.mp (f_cont i) x'
469469

470470
lemma continuous_subtype_is_closed_cover {f : α → β} (c : γ → α → Prop)
471471
(h_lf : locally_finite (λi, {x | c i x}))
@@ -536,11 +536,11 @@ variables {e : α → β} (de : dense_embedding e)
536536
protected lemma embedding (de : dense_embedding e) : embedding e :=
537537
⟨de.inj, eq_of_nhds_eq_nhds begin intro a, rw [← de.induced a, nhds_induced_eq_vmap] end
538538

539-
protected lemma towards (de : dense_embedding e) {a : α} : towards e (nhds a) (nhds (e a)) :=
540-
by rw [←de.induced a]; exact towards_vmap
539+
protected lemma tendsto (de : dense_embedding e) {a : α} : tendsto e (nhds a) (nhds (e a)) :=
540+
by rw [←de.induced a]; exact tendsto_vmap
541541

542542
protected lemma continuous (de : dense_embedding e) {a : α} : continuous e :=
543-
by rw [continuous_iff_towards]; exact assume a, de.towards
543+
by rw [continuous_iff_tendsto]; exact assume a, de.tendsto
544544

545545
lemma inj_iff (de : dense_embedding e) {x y} : e x = e y ↔ x = y :=
546546
⟨de.inj _ _, assume h, h ▸ rfl⟩
@@ -574,13 +574,13 @@ lemma ext_e_eq {a : α} {f : α → γ} (de : dense_embedding e)
574574
(hf : map f (nhds a) ≤ nhds (f a)) : de.ext f (e a) = f a :=
575575
de.ext_eq begin rw de.induced; exact hf end
576576

577-
lemma towards_ext {b : β} {f : α → γ} (de : dense_embedding e)
578-
(hf : {b | ∃c, towards f (vmap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
579-
towards (de.ext f) (nhds b) (nhds (de.ext f b)) :=
580-
let φ := {b | towards f (vmap e $ nhds b) (nhds $ de.ext f b)} in
577+
lemma tendsto_ext {b : β} {f : α → γ} (de : dense_embedding e)
578+
(hf : {b | ∃c, tendsto f (vmap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
579+
tendsto (de.ext f) (nhds b) (nhds (de.ext f b)) :=
580+
let φ := {b | tendsto f (vmap e $ nhds b) (nhds $ de.ext f b)} in
581581
have hφ : φ ∈ (nhds b).sets,
582582
from (nhds b).upwards_sets hf $ assume b ⟨c, hc⟩,
583-
show towards f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
583+
show tendsto f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
584584
assume s hs,
585585
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
586586
let ⟨s', hs'₁, (hs'₂ : preimage e s' ⊆ preimage f s'')⟩ := mem_of_nhds hφ hs''₁ in
@@ -612,8 +612,8 @@ have h₂ : t ⊆ preimage (de.ext f) (closure (f '' preimage e t)), from
612612
... ⊆ preimage (de.ext f) s : preimage_mono hs''₂)
613613

614614
lemma continuous_ext {f : α → γ} (de : dense_embedding e)
615-
(hf : ∀b, ∃c, towards f (vmap e (nhds b)) (nhds c)) : continuous (de.ext f) :=
616-
continuous_iff_towards.mpr $ assume b, de.towards_ext $ univ_mem_sets' hf
615+
(hf : ∀b, ∃c, tendsto f (vmap e (nhds b)) (nhds c)) : continuous (de.ext f) :=
616+
continuous_iff_tendsto.mpr $ assume b, de.tendsto_ext $ univ_mem_sets' hf
617617

618618
end dense_embedding
619619

0 commit comments

Comments
 (0)