@@ -45,22 +45,22 @@ lemma continuous_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg
45
45
continuous (g ∘ f) :=
46
46
assume s h, hf _ (hg s h)
47
47
48
- lemma continuous_iff_towards {f : α → β} :
49
- continuous f ↔ (∀x, towards f (nhds x) (nhds (f x))) :=
48
+ lemma continuous_iff_tendsto {f : α → β} :
49
+ continuous f ↔ (∀x, tendsto f (nhds x) (nhds (f x))) :=
50
50
⟨assume hf : continuous f, assume x s,
51
51
show s ∈ (nhds (f x)).sets → s ∈ (map f (nhds x)).sets,
52
52
by simp [nhds_sets];
53
53
exact assume ⟨t, t_open, t_subset, fx_in_t⟩,
54
54
⟨preimage f t, hf t t_open, fx_in_t, preimage_mono t_subset⟩,
55
- assume hf : ∀x, towards f (nhds x) (nhds (f x)),
55
+ assume hf : ∀x, tendsto f (nhds x) (nhds (f x)),
56
56
assume s, assume hs : is_open s,
57
57
have ∀a, f a ∈ s → s ∈ (nhds (f a)).sets,
58
58
by simp [nhds_sets]; exact assume a ha, ⟨s, hs, subset.refl s, ha⟩,
59
59
show is_open (preimage f s),
60
60
by simp [is_open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
61
61
62
62
lemma continuous_const [topological_space α] [topological_space β] {b : β} : continuous (λa:α, b) :=
63
- continuous_iff_towards .mpr $ assume a, towards_const_nhds
63
+ continuous_iff_tendsto .mpr $ assume a, tendsto_const_nhds
64
64
65
65
lemma continuous_iff_is_closed {f : α → β} :
66
66
continuous f ↔ (∀s, is_closed s → is_closed (preimage f s)) :=
@@ -75,7 +75,7 @@ have ∀ (a : α), nhds a ⊓ principal s ≠ ⊥ → nhds (f a) ⊓ principal (
75
75
by rwa[map_eq_bot_iff],
76
76
have h₂ : map f (nhds a ⊓ principal s) ≤ nhds (f a) ⊓ principal (f '' s),
77
77
from le_inf
78
- (le_trans (map_mono inf_le_left) $ by rw [continuous_iff_towards ] at h; exact h a)
78
+ (le_trans (map_mono inf_le_left) $ by rw [continuous_iff_tendsto ] at h; exact h a)
79
79
(le_trans (map_mono inf_le_right) $ by simp; exact subset.refl _),
80
80
neq_bot_of_le_neq_bot h₁ h₂,
81
81
by simp [image_subset_iff_subset_preimage, closure_eq_nhds]; assumption
@@ -292,7 +292,7 @@ le_antisymm
292
292
lemma map_nhds_induced_eq {a : α} (h : image f univ ∈ (nhds (f a)).sets) :
293
293
map f (@nhds α (induced f t) a) = nhds (f a) :=
294
294
le_antisymm
295
- ((@continuous_iff_towards α β (induced f t) _ _).mp continuous_induced_dom a)
295
+ ((@continuous_iff_tendsto α β (induced f t) _ _).mp continuous_induced_dom a)
296
296
(assume s, assume hs : preimage f s ∈ (@nhds α (induced f t) a).sets,
297
297
let ⟨t', t_subset, is_open_t, a_in_t⟩ := mem_nhds_sets_iff.mp h in
298
298
let ⟨s', s'_subset, ⟨s'', is_open_s'', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
@@ -426,13 +426,13 @@ end sum
426
426
section subtype
427
427
variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop }
428
428
429
- lemma towards_nhds_iff_of_embedding {f : α → β} {g : β → γ} {a : filter α} {b : β} (hg : embedding g) :
430
- towards f a (nhds b) ↔ towards (g ∘ f) a (nhds (g b)) :=
431
- by rw [towards, towards , hg.right, nhds_induced_eq_vmap, le_vmap_iff_map_le, map_map]
429
+ lemma tendsto_nhds_iff_of_embedding {f : α → β} {g : β → γ} {a : filter α} {b : β} (hg : embedding g) :
430
+ tendsto f a (nhds b) ↔ tendsto (g ∘ f) a (nhds (g b)) :=
431
+ by rw [tendsto, tendsto , hg.right, nhds_induced_eq_vmap, le_vmap_iff_map_le, map_map]
432
432
433
433
lemma continuous_iff_of_embedding {f : α → β} {g : β → γ} (hg : embedding g) :
434
434
continuous f ↔ continuous (g ∘ f) :=
435
- by simp [continuous_iff_towards , @towards_nhds_iff_of_embedding α β γ _ _ _ f g _ _ hg]
435
+ by simp [continuous_iff_tendsto , @tendsto_nhds_iff_of_embedding α β γ _ _ _ f g _ _ hg]
436
436
437
437
lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λx, (x, f x)) :=
438
438
embedding_of_embedding_compose (continuous_prod_mk continuous_id hf) continuous_fst embedding_id
@@ -459,13 +459,13 @@ lemma continuous_subtype_nhds_cover {f : α → β} {c : ι → α → Prop}
459
459
(c_cover : ∀x:α, ∃i, {x | c i x} ∈ (nhds x).sets)
460
460
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
461
461
continuous f :=
462
- continuous_iff_towards .mpr $ assume x,
462
+ continuous_iff_tendsto .mpr $ assume x,
463
463
let ⟨i, (c_sets : {x | c i x} ∈ (nhds x).sets)⟩ := c_cover x in
464
464
let x' : subtype (c i) := ⟨x, mem_of_nhds c_sets⟩ in
465
465
calc map f (nhds x) = map f (map subtype.val (nhds x')) :
466
466
congr_arg (map f) (map_nhds_subtype_val_eq _ $ c_sets).symm
467
467
... = map (λx:subtype (c i), f x.val) (nhds x') : rfl
468
- ... ≤ nhds (f x) : continuous_iff_towards .mp (f_cont i) x'
468
+ ... ≤ nhds (f x) : continuous_iff_tendsto .mp (f_cont i) x'
469
469
470
470
lemma continuous_subtype_is_closed_cover {f : α → β} (c : γ → α → Prop )
471
471
(h_lf : locally_finite (λi, {x | c i x}))
@@ -536,11 +536,11 @@ variables {e : α → β} (de : dense_embedding e)
536
536
protected lemma embedding (de : dense_embedding e) : embedding e :=
537
537
⟨de.inj, eq_of_nhds_eq_nhds begin intro a, rw [← de.induced a, nhds_induced_eq_vmap] end ⟩
538
538
539
- protected lemma towards (de : dense_embedding e) {a : α} : towards e (nhds a) (nhds (e a)) :=
540
- by rw [←de.induced a]; exact towards_vmap
539
+ protected lemma tendsto (de : dense_embedding e) {a : α} : tendsto e (nhds a) (nhds (e a)) :=
540
+ by rw [←de.induced a]; exact tendsto_vmap
541
541
542
542
protected lemma continuous (de : dense_embedding e) {a : α} : continuous e :=
543
- by rw [continuous_iff_towards ]; exact assume a, de.towards
543
+ by rw [continuous_iff_tendsto ]; exact assume a, de.tendsto
544
544
545
545
lemma inj_iff (de : dense_embedding e) {x y} : e x = e y ↔ x = y :=
546
546
⟨de.inj _ _, assume h, h ▸ rfl⟩
@@ -574,13 +574,13 @@ lemma ext_e_eq {a : α} {f : α → γ} (de : dense_embedding e)
574
574
(hf : map f (nhds a) ≤ nhds (f a)) : de.ext f (e a) = f a :=
575
575
de.ext_eq begin rw de.induced; exact hf end
576
576
577
- lemma towards_ext {b : β} {f : α → γ} (de : dense_embedding e)
578
- (hf : {b | ∃c, towards f (vmap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
579
- towards (de.ext f) (nhds b) (nhds (de.ext f b)) :=
580
- let φ := {b | towards f (vmap e $ nhds b) (nhds $ de.ext f b)} in
577
+ lemma tendsto_ext {b : β} {f : α → γ} (de : dense_embedding e)
578
+ (hf : {b | ∃c, tendsto f (vmap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
579
+ tendsto (de.ext f) (nhds b) (nhds (de.ext f b)) :=
580
+ let φ := {b | tendsto f (vmap e $ nhds b) (nhds $ de.ext f b)} in
581
581
have hφ : φ ∈ (nhds b).sets,
582
582
from (nhds b).upwards_sets hf $ assume b ⟨c, hc⟩,
583
- show towards f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
583
+ show tendsto f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
584
584
assume s hs,
585
585
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
586
586
let ⟨s', hs'₁, (hs'₂ : preimage e s' ⊆ preimage f s'')⟩ := mem_of_nhds hφ hs''₁ in
@@ -612,8 +612,8 @@ have h₂ : t ⊆ preimage (de.ext f) (closure (f '' preimage e t)), from
612
612
... ⊆ preimage (de.ext f) s : preimage_mono hs''₂)
613
613
614
614
lemma continuous_ext {f : α → γ} (de : dense_embedding e)
615
- (hf : ∀b, ∃c, towards f (vmap e (nhds b)) (nhds c)) : continuous (de.ext f) :=
616
- continuous_iff_towards .mpr $ assume b, de.towards_ext $ univ_mem_sets' hf
615
+ (hf : ∀b, ∃c, tendsto f (vmap e (nhds b)) (nhds c)) : continuous (de.ext f) :=
616
+ continuous_iff_tendsto .mpr $ assume b, de.tendsto_ext $ univ_mem_sets' hf
617
617
618
618
end dense_embedding
619
619
0 commit comments