Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1855bd5

Browse files
chore(*): split lines (#6323)
1 parent ed55502 commit 1855bd5

File tree

12 files changed

+63
-40
lines changed

12 files changed

+63
-40
lines changed

src/algebraic_geometry/sheafed_space.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,8 @@ local attribute [simp] id comp
8080

8181
lemma id_c (X : SheafedSpace C) :
8282
((𝟙 X) : X ⟶ X).c =
83-
(((functor.left_unitor _).inv) ≫ (whisker_right (nat_trans.op (opens.map_id (X.carrier)).hom) _)) := rfl
83+
(((functor.left_unitor _).inv) ≫
84+
(whisker_right (nat_trans.op (opens.map_id (X.carrier)).hom) _)) := rfl
8485

8586
@[simp] lemma id_c_app (X : SheafedSpace C) (U) :
8687
((𝟙 X) : X ⟶ X).c.app U = eq_to_hom (by { op_induction U, cases U, refl }) :=

src/group_theory/eckmann_hilton.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -95,8 +95,8 @@ omit h₁ h₂ distrib
9595
then the group is commutative. -/
9696
@[to_additive "If a type carries an additive group structure that distributes
9797
over a unital binary operation, then the additive group is commutative."]
98-
def comm_group [G : group X] (distrib : ∀ a b c d, ((a * b) <m₁> (c * d)) = ((a <m₁> c) * (b <m₁> d))) :
99-
comm_group X :=
98+
def comm_group [G : group X]
99+
(distrib : ∀ a b c d, ((a * b) <m₁> (c * d)) = ((a <m₁> c) * (b <m₁> d))) : comm_group X :=
100100
{ mul_comm := (eckmann_hilton.comm_monoid h₁ group.is_unital distrib).mul_comm,
101101
..G }
102102

src/group_theory/semidirect_product.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,8 @@ variables {N G} {φ : G →* mul_aut N}
4949
private def one_aux : N ⋊[φ] G := ⟨1, 1
5050
private def mul_aux (a b : N ⋊[φ] G) : N ⋊[φ] G := ⟨a.1 * φ a.2 b.1, a.right * b.right⟩
5151
private def inv_aux (a : N ⋊[φ] G) : N ⋊[φ] G := let i := a.2⁻¹ in ⟨φ i a.1⁻¹, i⟩
52-
private lemma mul_assoc_aux (a b c : N ⋊[φ] G) : mul_aux (mul_aux a b) c = mul_aux a (mul_aux b c) :=
52+
private lemma mul_assoc_aux (a b c : N ⋊[φ] G) :
53+
mul_aux (mul_aux a b) c = mul_aux a (mul_aux b c) :=
5354
by simp [mul_aux, mul_assoc, mul_equiv.map_mul]
5455
private lemma mul_one_aux (a : N ⋊[φ] G) : mul_aux a one_aux = a :=
5556
by cases a; simp [mul_aux, one_aux]

src/group_theory/subgroup.lean

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -397,7 +397,8 @@ begin
397397
congr',
398398
end
399399

400-
@[to_additive] lemma nontrivial_iff_exists_ne_one (H : subgroup G) : nontrivial H ↔ ∃ x ∈ H, x ≠ (1:G) :=
400+
@[to_additive] lemma nontrivial_iff_exists_ne_one (H : subgroup G) :
401+
nontrivial H ↔ ∃ x ∈ H, x ≠ (1:G) :=
401402
begin
402403
split,
403404
{ introI h,
@@ -873,7 +874,8 @@ instance top_normal : normal (⊤ : subgroup G) := ⟨λ _ _, mem_top⟩
873874

874875
variable (G)
875876
/-- The center of a group `G` is the set of elements that commute with everything in `G` -/
876-
@[to_additive "The center of a group `G` is the set of elements that commute with everything in `G`"]
877+
@[to_additive "The center of a group `G` is the set of elements that commute with everything in
878+
`G`"]
877879
def center : subgroup G :=
878880
{ carrier := {z | ∀ g, g * z = z * g},
879881
one_mem' := by simp,
@@ -908,7 +910,8 @@ def normalizer : subgroup G :=
908910
-- variant for sets.
909911
-- TODO should this replace `normalizer`?
910912
/-- The `set_normalizer` of `S` is the subgroup of `G` whose elements satisfy `g*S*g⁻¹=S` -/
911-
@[to_additive "The `set_normalizer` of `S` is the subgroup of `G` whose elements satisfy `g+S-g=S`."]
913+
@[to_additive "The `set_normalizer` of `S` is the subgroup of `G` whose elements satisfy
914+
`g+S-g=S`."]
912915
def set_normalizer (S : set G) : subgroup G :=
913916
{ carrier := {g : G | ∀ n, n ∈ S ↔ g * n * g⁻¹ ∈ S},
914917
one_mem' := by simp,

src/group_theory/submonoid/operations.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -557,7 +557,8 @@ begin
557557
exact ⟨h x, by { rintros rfl, exact S.one_mem }⟩ },
558558
end
559559

560-
@[to_additive] lemma nontrivial_iff_exists_ne_one (S : submonoid M) : nontrivial S ↔ ∃ x ∈ S, x ≠ (1:M) :=
560+
@[to_additive] lemma nontrivial_iff_exists_ne_one (S : submonoid M) :
561+
nontrivial S ↔ ∃ x ∈ S, x ≠ (1:M) :=
561562
begin
562563
split,
563564
{ introI h,

src/ring_theory/noetherian.lean

Lines changed: 13 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,8 @@ begin
176176
have : f x ∈ map f s, { rw mem_map, exact ⟨x, hx, rfl⟩ },
177177
rw [← ht1,← set.image_id ↑t1, finsupp.mem_span_iff_total] at this,
178178
rcases this with ⟨l, hl1, hl2⟩,
179-
refine mem_sup.2 ⟨(finsupp.total M M R id).to_fun ((finsupp.lmap_domain R R g : (P →₀ R) → M →₀ R) l), _,
179+
refine mem_sup.2 ⟨(finsupp.total M M R id).to_fun
180+
((finsupp.lmap_domain R R g : (P →₀ R) → M →₀ R) l), _,
180181
x - finsupp.total M M R id ((finsupp.lmap_domain R R g : (P →₀ R) → M →₀ R) l),
181182
_, add_sub_cancel'_right _ _⟩,
182183
{ rw [← set.image_id (g '' ↑t1), finsupp.mem_span_iff_total], refine ⟨_, _, rfl⟩,
@@ -389,8 +390,9 @@ lemma well_founded_submodule_gt (R M) [ring R] [add_comm_group M] [module R M] :
389390
∀ [is_noetherian R M], well_founded ((>) : submodule R M → submodule R M → Prop) :=
390391
is_noetherian_iff_well_founded.mp
391392

392-
lemma finite_of_linear_independent {R M} [comm_ring R] [nontrivial R] [add_comm_group M] [module R M]
393-
[is_noetherian R M] {s : set M} (hs : linear_independent R (coe : s → M)) : s.finite :=
393+
lemma finite_of_linear_independent {R M} [comm_ring R] [nontrivial R] [add_comm_group M]
394+
[module R M] [is_noetherian R M] {s : set M} (hs : linear_independent R (coe : s → M)) :
395+
s.finite :=
394396
begin
395397
refine classical.by_contradiction (λ hf, rel_embedding.well_founded_iff_no_descending_seq.1
396398
(well_founded_submodule_gt R M) ⟨_⟩),
@@ -409,9 +411,11 @@ begin
409411
by dsimp [gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
410412
end
411413

412-
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/
414+
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
415+
-/
413416
theorem set_has_maximal_iff_noetherian {R M} [ring R] [add_comm_group M] [module R M] :
414-
(∀ a : set $ submodule R M, a.nonempty → ∃ M' ∈ a, ∀ I ∈ a, M' ≤ I → I = M') ↔ is_noetherian R M :=
417+
(∀ a : set $ submodule R M, a.nonempty → ∃ M' ∈ a, ∀ I ∈ a, M' ≤ I → I = M') ↔
418+
is_noetherian R M :=
415419
by rw [is_noetherian_iff_well_founded, well_founded.well_founded_iff_has_max']
416420

417421
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
@@ -578,11 +582,12 @@ end
578582
variables {A : Type*} [integral_domain A] [is_noetherian_ring A]
579583

580584
/--In a noetherian integral domain which is not a field, every non-zero ideal contains a non-zero
581-
product of prime ideals; in a field, the whole ring is a non-zero ideal containing only 0 as product
582-
or prime ideals ([samuel, § 3.3, Lemma 3])
585+
product of prime ideals; in a field, the whole ring is a non-zero ideal containing only 0 as
586+
product or prime ideals ([samuel, § 3.3, Lemma 3])
583587
-/
584588

585-
lemma exists_prime_spectrum_prod_le_and_ne_bot_of_domain (h_fA : ¬ is_field A) {I : ideal A} (h_nzI: I ≠ ⊥) :
589+
lemma exists_prime_spectrum_prod_le_and_ne_bot_of_domain (h_fA : ¬ is_field A) {I : ideal A}
590+
(h_nzI: I ≠ ⊥) :
586591
∃ (Z : multiset (prime_spectrum A)), multiset.prod (Z.map (coe : subtype _ → ideal A)) ≤ I ∧
587592
multiset.prod (Z.map (coe : subtype _ → ideal A)) ≠ ⊥ :=
588593
begin

src/ring_theory/principal_ideal_domain.lean

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -118,13 +118,12 @@ instance euclidean_domain.to_principal_ideal_domain : is_principal_ideal_ring R
118118
(ideal.mem_span_singleton.2 $ dvd_add (dvd_mul_right _ _) $
119119
have (x % (well_founded.min wf {x : R | x ∈ S ∧ x ≠ 0} h) ∉ {x : R | x ∈ S ∧ x ≠ 0}),
120120
from λ h₁, well_founded.not_lt_min wf _ h h₁ (mod_lt x hmin.2),
121-
have x % well_founded.min wf {x : R | x ∈ S ∧ x ≠ 0} h = 0, by finish [(mod_mem_iff hmin.1).2 hx],
121+
have x % well_founded.min wf {x : R | x ∈ S ∧ x ≠ 0} h = 0,
122+
by finish [(mod_mem_iff hmin.1).2 hx],
122123
by simp *),
123124
λ hx, let ⟨y, hy⟩ := ideal.mem_span_singleton.1 hx in hy.symm ▸ S.mul_mem_right _ hmin.1⟩⟩
124-
else0, submodule.ext $ λ a, by rw [← @submodule.bot_coe R R _ _ _, span_eq, submodule.mem_bot]; exact
125-
⟨λ haS, by_contradiction $ λ ha0, h ⟨a, ⟨haS, ha0⟩⟩,
126-
λ h₁, h₁.symm ▸ S.zero_mem⟩⟩⟩ }
127-
125+
else0, submodule.ext $ λ a, by rw [← @submodule.bot_coe R R _ _ _, span_eq, submodule.mem_bot];
126+
exact ⟨λ haS, by_contradiction $ λ ha0, h ⟨a, ⟨haS, ha0⟩⟩, λ h₁, h₁.symm ▸ S.zero_mem⟩⟩⟩ }
128127
end
129128

130129
namespace principal_ideal_ring

src/ring_theory/roots_of_unity.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,8 @@ is_cyclic_of_subgroup_integral_domain ((units.coe_hom R).comp (roots_of_unity k
147147

148148
lemma card_roots_of_unity : fintype.card (roots_of_unity k R) ≤ k :=
149149
calc fintype.card (roots_of_unity k R)
150-
= fintype.card {x // x ∈ nth_roots k (1 : R)} : fintype.card_congr (roots_of_unity_equiv_nth_roots R k)
150+
= fintype.card {x // x ∈ nth_roots k (1 : R)} :
151+
fintype.card_congr (roots_of_unity_equiv_nth_roots R k)
151152
... ≤ (nth_roots k (1 : R)).attach.card : multiset.card_le_of_le (multiset.erase_dup_le _)
152153
... = (nth_roots k (1 : R)).card : multiset.card_attach
153154
... ≤ k : card_nth_roots k 1

src/ring_theory/subring.lean

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -407,14 +407,16 @@ instance : has_inf (subring R) :=
407407
@[simp] lemma mem_inf {p p' : subring R} {x : R} : x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl
408408

409409
instance : has_Inf (subring R) :=
410-
⟨λ s, subring.mk' (⋂ t ∈ s, ↑t) (⨅ t ∈ s, subring.to_submonoid t ) (⨅ t ∈ s, subring.to_add_subgroup t) (by simp) (by simp)⟩
410+
⟨λ s, subring.mk' (⋂ t ∈ s, ↑t) (⨅ t ∈ s, subring.to_submonoid t )
411+
(⨅ t ∈ s, subring.to_add_subgroup t) (by simp) (by simp)⟩
411412

412413
@[simp, norm_cast] lemma coe_Inf (S : set (subring R)) :
413414
((Inf S : subring R) : set R) = ⋂ s ∈ S, ↑s := rfl
414415

415416
lemma mem_Inf {S : set (subring R)} {x : R} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_bInter_iff
416417

417-
@[simp] lemma Inf_to_submonoid (s : set (subring R)) : (Inf s).to_submonoid = ⨅ t ∈ s, subring.to_submonoid t := mk'_to_submonoid _ _
418+
@[simp] lemma Inf_to_submonoid (s : set (subring R)) :
419+
(Inf s).to_submonoid = ⨅ t ∈ s, subring.to_submonoid t := mk'_to_submonoid _ _
418420

419421
@[simp] lemma Inf_to_add_subgroup (s : set (subring R)) :
420422
(Inf s).to_add_subgroup = ⨅ t ∈ s, subring.to_add_subgroup t := mk'_to_add_subgroup _ _
@@ -458,8 +460,8 @@ lemma closure_eq_of_le {s : set R} {t : subring R} (h₁ : s ⊆ t) (h₂ : t
458460
le_antisymm (closure_le.2 h₁) h₂
459461

460462
/-- An induction principle for closure membership. If `p` holds for `0`, `1`, and all elements
461-
of `s`, and is preserved under addition, negation, and multiplication, then `p` holds for all elements
462-
of the closure of `s`. -/
463+
of `s`, and is preserved under addition, negation, and multiplication, then `p` holds for all
464+
elements of the closure of `s`. -/
463465
@[elab_as_eliminator]
464466
lemma closure_induction {s : set R} {p : R → Prop} {x} (h : x ∈ closure s)
465467
(Hs : ∀ x ∈ s, p x) (H0 : p 0) (H1 : p 1)
@@ -480,10 +482,12 @@ lemma mem_closure_iff {s : set R} {x} :
480482
( λ p hp, add_subgroup.subset_closure ((submonoid.closure s).mul_mem hp hq) )
481483
( begin rw zero_mul q, apply add_subgroup.zero_mem _, end )
482484
( λ p₁ p₂ ihp₁ ihp₂, begin rw add_mul p₁ p₂ q, apply add_subgroup.add_mem _ ihp₁ ihp₂, end )
483-
( λ x hx, begin have f : -x * q = -(x*q) := by simp, rw f, apply add_subgroup.neg_mem _ hx, end ) )
485+
( λ x hx, begin have f : -x * q = -(x*q) :=
486+
by simp, rw f, apply add_subgroup.neg_mem _ hx, end ) )
484487
( begin rw mul_zero x, apply add_subgroup.zero_mem _, end )
485488
( λ q₁ q₂ ihq₁ ihq₂, begin rw mul_add x q₁ q₂, apply add_subgroup.add_mem _ ihq₁ ihq₂ end )
486-
( λ z hz, begin have f : x * -z = -(x*z) := by simp, rw f, apply add_subgroup.neg_mem _ hz, end ) ),
489+
( λ z hz, begin have f : x * -z = -(x*z) := by simp,
490+
rw f, apply add_subgroup.neg_mem _ hz, end ) ),
487491
λ h, add_subgroup.closure_induction h
488492
( λ x hx, submonoid.closure_induction hx
489493
( λ x hx, subset_closure hx )
@@ -767,7 +771,8 @@ begin
767771
{ rw [list.map_cons, list.sum_cons],
768772
exact ha this (ih HL.2) },
769773
replace HL := HL.1, clear ih tl,
770-
suffices : ∃ L : list R, (∀ x ∈ L, x ∈ s) ∧ (list.prod hd = list.prod L ∨ list.prod hd = -list.prod L),
774+
suffices : ∃ L : list R, (∀ x ∈ L, x ∈ s) ∧
775+
(list.prod hd = list.prod L ∨ list.prod hd = -list.prod L),
771776
{ rcases this with ⟨L, HL', HP | HP⟩,
772777
{ rw HP, clear HP HL hd, induction L with hd tl ih, { exact h1 },
773778
rw list.forall_mem_cons at HL',

src/ring_theory/tensor_product.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -485,7 +485,8 @@ lemma assoc_aux_2 (r : R) :
485485
-- variables {R A B C}
486486

487487
-- @[simp] theorem assoc_tmul (a : A) (b : B) (c : C) :
488-
-- ((tensor_product.assoc R A B C) : (A ⊗[R] B) ⊗[R] C → A ⊗[R] (B ⊗[R] C)) ((a ⊗ₜ b) ⊗ₜ c) = a ⊗ₜ (b ⊗ₜ c) :=
488+
-- ((tensor_product.assoc R A B C) :
489+
-- (A ⊗[R] B) ⊗[R] C → A ⊗[R] (B ⊗[R] C)) ((a ⊗ₜ b) ⊗ₜ c) = a ⊗ₜ (b ⊗ₜ c) :=
489490
-- rfl
490491

491492
end

0 commit comments

Comments
 (0)