Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1c3ba7d

Browse files
committed
lint(geometry/manifold/whitney_embedding): assume [finite _] (#17628)
1 parent 8b7251c commit 1c3ba7d

File tree

1 file changed

+7
-3
lines changed

1 file changed

+7
-3
lines changed

src/geometry/manifold/whitney_embedding.lean

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,8 @@ In this section we prove a version of the Whitney embedding theorem: for any com
4545
`M`, for sufficiently large `n` there exists a smooth embedding `M → ℝ^n`.
4646
-/
4747

48-
variables [t2_space M] [fintype ι] {s : set M} (f : smooth_bump_covering ι I M s)
48+
variables [t2_space M] [hi : fintype ι] {s : set M} (f : smooth_bump_covering ι I M s)
49+
include hi
4950

5051
/-- Smooth embedding of `M` into `(E × ℝ) ^ ι`. -/
5152
def embedding_pi_tangent : C^∞⟮I, M; 𝓘(ℝ, ι → (E × ℝ)), ι → (E × ℝ)⟯ :=
@@ -103,13 +104,16 @@ lemma embedding_pi_tangent_injective_mfderiv (x : M) (hx : x ∈ s) :
103104
injective (mfderiv I 𝓘(ℝ, ι → (E × ℝ)) f.embedding_pi_tangent x) :=
104105
linear_map.ker_eq_bot.1 (f.embedding_pi_tangent_ker_mfderiv x hx)
105106

106-
/-- Baby version of the Whitney weak embedding theorem: if `M` admits a finite covering by
107+
omit hi
108+
109+
/-- Baby version of the **Whitney weak embedding theorem**: if `M` admits a finite covering by
107110
supports of bump functions, then for some `n` it can be immersed into the `n`-dimensional
108111
Euclidean space. -/
109-
lemma exists_immersion_euclidean (f : smooth_bump_covering ι I M) :
112+
lemma exists_immersion_euclidean [finite ι] (f : smooth_bump_covering ι I M) :
110113
∃ (n : ℕ) (e : M → euclidean_space ℝ (fin n)), smooth I (𝓡 n) e ∧
111114
injective e ∧ ∀ x : M, injective (mfderiv I (𝓡 n) e x) :=
112115
begin
116+
casesI nonempty_fintype ι,
113117
set F := euclidean_space ℝ (fin $ finrank ℝ (ι → (E × ℝ))),
114118
letI : is_noetherian ℝ (E × ℝ) := is_noetherian.iff_fg.2 infer_instance,
115119
letI : finite_dimensional ℝ (ι → E × ℝ) := is_noetherian.iff_fg.1 infer_instance,

0 commit comments

Comments
 (0)