@@ -45,7 +45,8 @@ In this section we prove a version of the Whitney embedding theorem: for any com
45
45
`M`, for sufficiently large `n` there exists a smooth embedding `M → ℝ^n`.
46
46
-/
47
47
48
- variables [t2_space M] [fintype ι] {s : set M} (f : smooth_bump_covering ι I M s)
48
+ variables [t2_space M] [hi : fintype ι] {s : set M} (f : smooth_bump_covering ι I M s)
49
+ include hi
49
50
50
51
/-- Smooth embedding of `M` into `(E × ℝ) ^ ι`. -/
51
52
def embedding_pi_tangent : C^∞⟮I, M; 𝓘(ℝ, ι → (E × ℝ)), ι → (E × ℝ)⟯ :=
@@ -103,13 +104,16 @@ lemma embedding_pi_tangent_injective_mfderiv (x : M) (hx : x ∈ s) :
103
104
injective (mfderiv I 𝓘(ℝ, ι → (E × ℝ)) f.embedding_pi_tangent x) :=
104
105
linear_map.ker_eq_bot.1 (f.embedding_pi_tangent_ker_mfderiv x hx)
105
106
106
- /-- Baby version of the Whitney weak embedding theorem: if `M` admits a finite covering by
107
+ omit hi
108
+
109
+ /-- Baby version of the **Whitney weak embedding theorem** : if `M` admits a finite covering by
107
110
supports of bump functions, then for some `n` it can be immersed into the `n`-dimensional
108
111
Euclidean space. -/
109
- lemma exists_immersion_euclidean (f : smooth_bump_covering ι I M) :
112
+ lemma exists_immersion_euclidean [finite ι] (f : smooth_bump_covering ι I M) :
110
113
∃ (n : ℕ) (e : M → euclidean_space ℝ (fin n)), smooth I (𝓡 n) e ∧
111
114
injective e ∧ ∀ x : M, injective (mfderiv I (𝓡 n) e x) :=
112
115
begin
116
+ casesI nonempty_fintype ι,
113
117
set F := euclidean_space ℝ (fin $ finrank ℝ (ι → (E × ℝ))),
114
118
letI : is_noetherian ℝ (E × ℝ) := is_noetherian.iff_fg.2 infer_instance,
115
119
letI : finite_dimensional ℝ (ι → E × ℝ) := is_noetherian.iff_fg.1 infer_instance,
0 commit comments