This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +22
-0
lines changed
src/category_theory/limits/shapes Expand file tree Collapse file tree 1 file changed +22
-0
lines changed Original file line number Diff line number Diff line change @@ -541,4 +541,26 @@ instance has_image_maps_of_has_strong_epi_images [has_strong_epi_images C] :
541
541
542
542
end has_strong_epi_images
543
543
544
+ variables [has_strong_epi_mono_factorisations.{v} C]
545
+ variables {X Y : C} {f : X ⟶ Y}
546
+
547
+ /--
548
+ If `C` has strong epi mono factorisations, then the image is unique up to isomorphism, in that if
549
+ `f` factors as a strong epi followed by a mono, this factorisation is essentially the image
550
+ factorisation.
551
+ -/
552
+ def image.iso_strong_epi_mono {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
553
+ I' ≅ image f :=
554
+ is_image.iso_ext {strong_epi_mono_factorisation . I := I', m := m, e := e}.to_mono_is_image (image.is_image f)
555
+
556
+ @[simp]
557
+ lemma image.iso_strong_epi_mono_hom_comp_ι {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
558
+ (image.iso_strong_epi_mono e m comm).hom ≫ image.ι f = m :=
559
+ is_image.lift_fac _ _
560
+
561
+ @[simp]
562
+ lemma image.iso_strong_epi_mono_inv_comp_mono {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
563
+ (image.iso_strong_epi_mono e m comm).inv ≫ m = image.ι f :=
564
+ image.lift_fac _
565
+
544
566
end category_theory.limits
You can’t perform that action at this time.
0 commit comments