Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1ccdbb9

Browse files
committed
feat(category_theory/images): unique image (#3921)
Show that the strong-epi mono factorisation of a morphism is unique.
1 parent 685d9dd commit 1ccdbb9

File tree

1 file changed

+22
-0
lines changed

1 file changed

+22
-0
lines changed

src/category_theory/limits/shapes/images.lean

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -541,4 +541,26 @@ instance has_image_maps_of_has_strong_epi_images [has_strong_epi_images C] :
541541

542542
end has_strong_epi_images
543543

544+
variables [has_strong_epi_mono_factorisations.{v} C]
545+
variables {X Y : C} {f : X ⟶ Y}
546+
547+
/--
548+
If `C` has strong epi mono factorisations, then the image is unique up to isomorphism, in that if
549+
`f` factors as a strong epi followed by a mono, this factorisation is essentially the image
550+
factorisation.
551+
-/
552+
def image.iso_strong_epi_mono {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
553+
I' ≅ image f :=
554+
is_image.iso_ext {strong_epi_mono_factorisation . I := I', m := m, e := e}.to_mono_is_image (image.is_image f)
555+
556+
@[simp]
557+
lemma image.iso_strong_epi_mono_hom_comp_ι {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
558+
(image.iso_strong_epi_mono e m comm).hom ≫ image.ι f = m :=
559+
is_image.lift_fac _ _
560+
561+
@[simp]
562+
lemma image.iso_strong_epi_mono_inv_comp_mono {I' : C} (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [strong_epi e] [mono m] :
563+
(image.iso_strong_epi_mono e m comm).inv ≫ m = image.ι f :=
564+
image.lift_fac _
565+
544566
end category_theory.limits

0 commit comments

Comments
 (0)