This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +12
-0
lines changed Expand file tree Collapse file tree 1 file changed +12
-0
lines changed Original file line number Diff line number Diff line change @@ -134,6 +134,7 @@ lemma uniform_space.to_core_to_topological_space (u : uniform_space α) :
134
134
topological_space_eq $ funext $ assume s,
135
135
by rw [uniform_space.core.to_topological_space, uniform_space.is_open_uniformity]
136
136
137
+ @[extensionality]
137
138
lemma uniform_space_eq : ∀{u₁ u₂ : uniform_space α}, u₁.uniformity = u₂.uniformity → u₁ = u₂
138
139
| (uniform_space.mk' t₁ u₁ o₁) (uniform_space.mk' t₂ u₂ o₂) h :=
139
140
have u₁ = u₂, from uniform_space.core_eq h,
@@ -1403,6 +1404,17 @@ def uniform_space.comap (f : α → β) (u : uniform_space β) : uniform_space
1403
1404
mem_nhds_uniformity_iff.1 $ mem_nhds_left _ ht⟩ }
1404
1405
end }
1405
1406
1407
+ lemma uniform_space_comap_id {α : Type *} : uniform_space.comap (id : α → α) = id :=
1408
+ by ext u ; dsimp [uniform_space.comap] ; rw [prod.id_prod, filter.comap_id]
1409
+
1410
+ lemma uniform_space.comap_comap_comp {α β γ} [uγ : uniform_space γ] {f : α → β} {g : β → γ} :
1411
+ uniform_space.comap (g ∘ f) uγ = uniform_space.comap f (uniform_space.comap g uγ) :=
1412
+ by ext ; dsimp [uniform_space.comap] ; rw filter.comap_comap_comp
1413
+
1414
+ lemma uniform_continuous_iff {α β} [uα : uniform_space α] [uβ : uniform_space β] (f : α → β) :
1415
+ uniform_continuous f ↔ uβ.comap f ≤ uα :=
1416
+ filter.map_le_iff_le_comap
1417
+
1406
1418
lemma uniform_continuous_comap {f : α → β} [u : uniform_space β] :
1407
1419
@uniform_continuous α β (uniform_space.comap f u) u f :=
1408
1420
tendsto_comap
You can’t perform that action at this time.
0 commit comments