Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1dc531a

Browse files
mcdollRemyDegenne
andcommitted
feat(measure_theory/integral): finiteness of lower Lebesgue integral (#16514)
This PR proves that if a function is integrable and non-negative, then it's lower Lebesgue integral is finite. Co-authored-by: Sébastien Gouëzel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Remy Degenne <remydegenne@gmail.com> Co-authored-by: Rémy Degenne <remydegenne@gmail.com>
1 parent ba584a4 commit 1dc531a

File tree

3 files changed

+32
-6
lines changed

3 files changed

+32
-6
lines changed

src/measure_theory/function/l1_space.lean

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -109,12 +109,7 @@ by simp only [has_finite_integral_iff_norm, edist_dist, dist_zero_right]
109109

110110
lemma has_finite_integral_iff_of_real {f : α → ℝ} (h : 0 ≤ᵐ[μ] f) :
111111
has_finite_integral f μ ↔ ∫⁻ a, ennreal.of_real (f a) ∂μ < ∞ :=
112-
have lintegral_eq : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, ennreal.of_real (f a) ∂μ :=
113-
begin
114-
refine lintegral_congr_ae (h.mono $ λ a h, _),
115-
rwa [real.norm_eq_abs, abs_of_nonneg]
116-
end,
117-
by rw [has_finite_integral_iff_norm, lintegral_eq]
112+
by rw [has_finite_integral, lintegral_nnnorm_eq_of_ae_nonneg h]
118113

119114
lemma has_finite_integral_iff_of_nnreal {f : α → ℝ≥0} :
120115
has_finite_integral (λ x, (f x : ℝ)) μ ↔ ∫⁻ a, f a ∂μ < ∞ :=

src/measure_theory/integral/integrable_on.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -246,6 +246,16 @@ begin
246246
exact ((Lp.mem_ℒp _).restrict s).mem_ℒp_of_exponent_le hp,
247247
end
248248

249+
lemma integrable.lintegral_lt_top {f : α → ℝ} (hf : integrable f μ) :
250+
∫⁻ x, ennreal.of_real (f x) ∂μ < ∞ :=
251+
calc ∫⁻ x, ennreal.of_real (f x) ∂μ
252+
≤ ∫⁻ x, ↑∥f x∥₊ ∂μ : lintegral_to_real_le_lintegral_nnnorm f
253+
... < ∞ : hf.2
254+
255+
lemma integrable_on.set_lintegral_lt_top {f : α → ℝ} {s : set α} (hf : integrable_on f s μ) :
256+
∫⁻ x in s, ennreal.of_real (f x) ∂μ < ∞ :=
257+
integrable.lintegral_lt_top hf
258+
249259
/-- We say that a function `f` is *integrable at filter* `l` if it is integrable on some
250260
set `s ∈ l`. Equivalently, it is eventually integrable on `s` in `l.small_sets`. -/
251261
def integrable_at_filter (f : α → E) (l : filter α) (μ : measure α . volume_tac) :=

src/measure_theory/integral/lebesgue.lean

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1227,6 +1227,27 @@ lemma set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : set α} (hs : measu
12271227
∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ :=
12281228
by { rw lintegral_congr_ae, rw eventually_eq, rwa ae_restrict_iff' hs, }
12291229

1230+
lemma lintegral_to_real_le_lintegral_nnnorm (f : α → ℝ) :
1231+
∫⁻ x, ennreal.of_real (f x) ∂μ ≤ ∫⁻ x, ∥f x∥₊ ∂μ :=
1232+
begin
1233+
simp_rw ← of_real_norm_eq_coe_nnnorm,
1234+
refine lintegral_mono (λ x, ennreal.of_real_le_of_real _),
1235+
rw real.norm_eq_abs,
1236+
exact le_abs_self (f x),
1237+
end
1238+
1239+
lemma lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
1240+
∫⁻ x, ∥f x∥₊ ∂μ = ∫⁻ x, ennreal.of_real (f x) ∂μ :=
1241+
begin
1242+
apply lintegral_congr_ae,
1243+
filter_upwards [h_nonneg] with x hx,
1244+
rw [real.nnnorm_of_nonneg hx, ennreal.of_real_eq_coe_nnreal hx],
1245+
end
1246+
1247+
lemma lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
1248+
∫⁻ x, ∥f x∥₊ ∂μ = ∫⁻ x, ennreal.of_real (f x) ∂μ :=
1249+
lintegral_nnnorm_eq_of_ae_nonneg (filter.eventually_of_forall h_nonneg)
1250+
12301251
/-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
12311252
12321253
See `lintegral_supr_directed` for a more general form. -/

0 commit comments

Comments
 (0)