@@ -923,25 +923,49 @@ with continuous addition/multiplication. See also `submonoid.top_closure_mul_sel
923
923
`topology.algebra.monoid`.
924
924
-/
925
925
926
- section has_continuous_mul
927
- variables [topological_space α] [group α] [has_continuous_mul α] {s t : set α}
926
+ section has_continuous_const_smul
927
+ variables [topological_space β] [group α] [mul_action α β]
928
+ [has_continuous_const_smul α β] {s : set α} {t : set β}
928
929
929
- @[to_additive] lemma is_open.mul_left (ht : is_open t) : is_open (s * t) :=
930
- by { rw ←Union_mul_left_image , exact is_open_bUnion (λ a ha, is_open_map_mul_left a t ht ) }
930
+ @[to_additive] lemma is_open.smul_left (ht : is_open t) : is_open (s • t) :=
931
+ by { rw ←bUnion_smul_set , exact is_open_bUnion (λ a _, ht.smul _ ) }
931
932
932
- @[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) :=
933
- by { rw ←Union_mul_right_image, exact is_open_bUnion (λ a ha, is_open_map_mul_right a s hs) }
933
+ @[to_additive] lemma subset_interior_smul_right : s • interior t ⊆ interior (s • t) :=
934
+ interior_maximal (set.smul_subset_smul_left interior_subset) is_open_interior.smul_left
934
935
935
- @[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) :=
936
- interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right
936
+ variables [topological_space α]
937
+
938
+ @[to_additive] lemma subset_interior_smul : interior s • interior t ⊆ interior (s • t) :=
939
+ (set.smul_subset_smul_right interior_subset).trans subset_interior_smul_right
940
+
941
+ end has_continuous_const_smul
942
+
943
+ section has_continuous_const_smul
944
+ variables [topological_space α] [group α] [has_continuous_const_smul α α] {s t : set α}
945
+
946
+ @[to_additive] lemma is_open.mul_left : is_open t → is_open (s * t) := is_open.smul_left
937
947
938
948
@[to_additive] lemma subset_interior_mul_right : s * interior t ⊆ interior (s * t) :=
939
- interior_maximal (set.mul_subset_mul_left interior_subset) is_open_interior.mul_left
949
+ subset_interior_smul_right
940
950
941
951
@[to_additive] lemma subset_interior_mul : interior s * interior t ⊆ interior (s * t) :=
952
+ subset_interior_smul
953
+
954
+ end has_continuous_const_smul
955
+
956
+ section has_continuous_const_smul_op
957
+ variables [topological_space α] [group α] [has_continuous_const_smul αᵐᵒᵖ α] {s t : set α}
958
+
959
+ @[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) :=
960
+ by { rw ←bUnion_op_smul_set, exact is_open_bUnion (λ a _, hs.smul _) }
961
+
962
+ @[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) :=
963
+ interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right
964
+
965
+ @[to_additive] lemma subset_interior_mul' : interior s * interior t ⊆ interior (s * t) :=
942
966
(set.mul_subset_mul_left interior_subset).trans subset_interior_mul_left
943
967
944
- end has_continuous_mul
968
+ end has_continuous_const_smul_op
945
969
946
970
section topological_group
947
971
variables [topological_space α] [group α] [topological_group α] {s t : set α}
@@ -1167,7 +1191,9 @@ end
1167
1191
1168
1192
/-- Every separated topological group in which there exists a compact set with nonempty interior
1169
1193
is locally compact. -/
1170
- @[to_additive] lemma topological_space.positive_compacts.locally_compact_space_of_group
1194
+ @[to_additive " Every separated topological group in which there exists a compact set with nonempty
1195
+ interior is locally compact." ]
1196
+ lemma topological_space.positive_compacts.locally_compact_space_of_group
1171
1197
[t2_space G] (K : positive_compacts G) :
1172
1198
locally_compact_space G :=
1173
1199
begin
0 commit comments