Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1f309c5

Browse files
committed
feat(analysis/special_functions): real.log is infinitely smooth away from zero (#5116)
Also redefine it using `order_iso.to_homeomorph` and prove more lemmas about limits of `exp`/`log`.
1 parent 2032f7b commit 1f309c5

File tree

7 files changed

+284
-160
lines changed

7 files changed

+284
-160
lines changed

src/analysis/calculus/times_cont_diff.lean

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2429,6 +2429,9 @@ lemma times_cont_diff_at_inv {x : 𝕜'} (hx : x ≠ 0) {n} :
24292429
times_cont_diff_at 𝕜 n has_inv.inv x :=
24302430
by simpa only [inverse_eq_has_inv] using times_cont_diff_at_ring_inverse 𝕜 (units.mk0 x hx)
24312431

2432+
lemma times_cont_diff_on_inv {n} : times_cont_diff_on 𝕜 n (has_inv.inv : 𝕜' → 𝕜') {0}ᶜ :=
2433+
λ x hx, (times_cont_diff_at_inv 𝕜 hx).times_cont_diff_within_at
2434+
24322435
variable {𝕜}
24332436

24342437
-- TODO: the next few lemmas don't need `𝕜` or `𝕜'` to be complete
@@ -2683,7 +2686,6 @@ begin
26832686
exact with_top.coe_le_coe.2 (nat.le_succ n) }
26842687
end
26852688

2686-
26872689
/-- A function is `C^∞` on an open domain if and only if it is differentiable
26882690
there, and its derivative (formulated with `deriv`) is `C^∞`. -/
26892691
theorem times_cont_diff_on_top_iff_deriv_of_open (hs : is_open s₂) :

0 commit comments

Comments
 (0)