@@ -803,8 +803,7 @@ end bounded
803
803
804
804
section topology
805
805
806
- variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [add_comm_group F] [module 𝕜 F]
807
- variables [nonempty ι] [nonempty ι']
806
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [nonempty ι]
808
807
809
808
/-- The proposition that the topology of `E` is induced by a family of seminorms `p`. -/
810
809
class with_seminorms (p : ι → seminorm 𝕜 E) [t : topological_space E] : Prop :=
@@ -813,6 +812,34 @@ class with_seminorms (p : ι → seminorm 𝕜 E) [t : topological_space E] : Pr
813
812
lemma with_seminorms_eq (p : ι → seminorm 𝕜 E) [t : topological_space E] [with_seminorms p] :
814
813
t = ((seminorm_module_filter_basis p).topology) := with_seminorms.topology_eq_with_seminorms
815
814
815
+ end topology
816
+
817
+ section topological_add_group
818
+
819
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E]
820
+ variables [topological_space E] [topological_add_group E]
821
+ variables [nonempty ι]
822
+
823
+ lemma with_seminorms_of_nhds (p : ι → seminorm 𝕜 E)
824
+ (h : 𝓝 (0 : E) = (seminorm_module_filter_basis p).to_filter_basis.filter) :
825
+ with_seminorms p :=
826
+ begin
827
+ refine ⟨topological_add_group.ext (by apply_instance)
828
+ ((seminorm_add_group_filter_basis _).is_topological_add_group) _⟩,
829
+ rw add_group_filter_basis.nhds_zero_eq,
830
+ exact h,
831
+ end
832
+
833
+ lemma with_seminorms_of_has_basis (p : ι → seminorm 𝕜 E) (h : (𝓝 (0 : E)).has_basis
834
+ (λ (s : set E), s ∈ (seminorm_basis_zero p)) id) :
835
+ with_seminorms p :=
836
+ with_seminorms_of_nhds p $ filter.has_basis.eq_of_same_basis h
837
+ ((seminorm_add_group_filter_basis p).to_filter_basis.has_basis)
838
+
839
+ end topological_add_group
840
+
841
+ section normed_space
842
+
816
843
/-- The topology of a `normed_space 𝕜 E` is induced by the seminorm `norm_seminorm 𝕜 E`. -/
817
844
instance norm_with_seminorms (𝕜 E) [normed_field 𝕜] [semi_normed_group E] [normed_space 𝕜 E] :
818
845
with_seminorms (λ (_ : fin 1 ), norm_seminorm 𝕜 E) :=
@@ -834,6 +861,13 @@ begin
834
861
exact set.subset_univ _,
835
862
end
836
863
864
+ end normed_space
865
+
866
+ section continuous_bounded
867
+
868
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [add_comm_group F] [module 𝕜 F]
869
+ variables [nonempty ι] [nonempty ι']
870
+
837
871
lemma continuous_from_bounded (p : ι → seminorm 𝕜 E) (q : ι' → seminorm 𝕜 F)
838
872
[uniform_space E] [uniform_add_group E] [with_seminorms p]
839
873
[uniform_space F] [uniform_add_group F] [with_seminorms q]
@@ -876,7 +910,7 @@ begin
876
910
exact continuous_from_bounded (λ _ : fin 1 , norm_seminorm 𝕜 E) q f hf,
877
911
end
878
912
879
- end topology
913
+ end continuous_bounded
880
914
881
915
section locally_convex_space
882
916
0 commit comments