Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 22cdd37

Browse files
committed
feat(group_theory/quotient_group): define ker_lift and prove simp-lemmas
1 parent 5da8605 commit 22cdd37

File tree

1 file changed

+21
-1
lines changed

1 file changed

+21
-1
lines changed

src/group_theory/quotient_group.lean

Lines changed: 21 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -123,8 +123,28 @@ attribute [to_additive quotient_add_group.is_add_group_hom_quotient_lift.equatio
123123

124124
open function is_group_hom
125125

126+
def ker_lift : quotient (ker φ) → H :=
127+
lift _ φ $ λ g, (mem_ker φ).mp
128+
129+
attribute [to_additive quotient_add_group.ker_lift._proof_1] quotient_group.ker_lift._proof_1
130+
attribute [to_additive quotient_add_group.ker_lift._proof_2] quotient_group.ker_lift._proof_2
131+
attribute [to_additive quotient_add_group.ker_lift] quotient_group.ker_lift
132+
attribute [to_additive quotient_add_group.ker_lift.equations._eqn_1] quotient_group.ker_lift.equations._eqn_1
133+
134+
@[simp, to_additive quotient_add_group.ker_lift_mk]
135+
lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g :=
136+
lift_mk _ _ _
137+
138+
@[simp, to_additive quotient_add_group.ker_lift_mk']
139+
lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g :=
140+
lift_mk' _ _ _
141+
142+
@[to_additive quotient_add_group.ker_lift_is_add_group_hom]
143+
instance ker_lift_is_group_hom : is_group_hom (ker_lift φ) :=
144+
quotient_group.is_group_hom_quotient_lift _ _ _
145+
126146
@[to_additive quotient_add_group.injective_ker_lift]
127-
lemma injective_ker_lift : injective (lift (ker φ) φ $ λ x h, (mem_ker φ).1 h) :=
147+
lemma injective_ker_lift : injective (ker_lift φ) :=
128148
assume a b, quotient.induction_on₂' a b $ assume a b (h : φ a = φ b), quotient.sound' $
129149
show a⁻¹ * b ∈ ker φ, by rw [mem_ker φ,
130150
is_group_hom.mul φ, ← h, is_group_hom.inv φ, inv_mul_self]

0 commit comments

Comments
 (0)