@@ -123,8 +123,28 @@ attribute [to_additive quotient_add_group.is_add_group_hom_quotient_lift.equatio
123
123
124
124
open function is_group_hom
125
125
126
+ def ker_lift : quotient (ker φ) → H :=
127
+ lift _ φ $ λ g, (mem_ker φ).mp
128
+
129
+ attribute [to_additive quotient_add_group.ker_lift._proof_1] quotient_group.ker_lift._proof_1
130
+ attribute [to_additive quotient_add_group.ker_lift._proof_2] quotient_group.ker_lift._proof_2
131
+ attribute [to_additive quotient_add_group.ker_lift] quotient_group.ker_lift
132
+ attribute [to_additive quotient_add_group.ker_lift.equations._eqn_1] quotient_group.ker_lift.equations._eqn_1
133
+
134
+ @[simp, to_additive quotient_add_group.ker_lift_mk]
135
+ lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g :=
136
+ lift_mk _ _ _
137
+
138
+ @[simp, to_additive quotient_add_group.ker_lift_mk']
139
+ lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g :=
140
+ lift_mk' _ _ _
141
+
142
+ @[to_additive quotient_add_group.ker_lift_is_add_group_hom]
143
+ instance ker_lift_is_group_hom : is_group_hom (ker_lift φ) :=
144
+ quotient_group.is_group_hom_quotient_lift _ _ _
145
+
126
146
@[to_additive quotient_add_group.injective_ker_lift]
127
- lemma injective_ker_lift : injective (lift (ker φ) φ $ λ x h, (mem_ker φ). 1 h ) :=
147
+ lemma injective_ker_lift : injective (ker_lift φ ) :=
128
148
assume a b, quotient.induction_on₂' a b $ assume a b (h : φ a = φ b), quotient.sound' $
129
149
show a⁻¹ * b ∈ ker φ, by rw [mem_ker φ,
130
150
is_group_hom.mul φ, ← h, is_group_hom.inv φ, inv_mul_self]
0 commit comments