Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 23749aa

Browse files
committed
chore(measure_theory/*): use _measure instead of _meas (#3892)
1 parent 31cd6dd commit 23749aa

File tree

4 files changed

+47
-46
lines changed

4 files changed

+47
-46
lines changed

src/measure_theory/bochner_integration.lean

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -347,15 +347,15 @@ begin
347347
end
348348
end
349349

350-
lemma integral_add_meas {ν} (f : α →ₛ E) (hf : integrable f (μ + ν)) :
350+
lemma integral_add_measure {ν} (f : α →ₛ E) (hf : integrable f (μ + ν)) :
351351
f.integral (μ + ν) = f.integral μ + f.integral ν :=
352352
begin
353353
simp only [integral_eq_sum_filter, ← sum_add_distrib, ← add_smul, measure.add_apply],
354354
refine sum_congr rfl (λ x hx, _),
355355
rw [to_real_add];
356356
refine ne_of_lt ((integrable_iff_fin_meas_supp.1 _).meas_preimage_singleton_ne_zero
357357
(mem_filter.1 hx).2),
358-
exacts [hf.left_of_add_meas, hf.right_of_add_meas]
358+
exacts [hf.left_of_add_measure, hf.right_of_add_measure]
359359
end
360360

361361
variables [second_countable_topology E] [measurable_space E] [borel_space E]
@@ -1262,13 +1262,13 @@ calc ∥∫ x, f x ∂μ∥ ≤ ∫ x, C ∂μ : norm_integral_le_of_norm_le mea
12621262

12631263
variable {ν : measure α}
12641264

1265-
lemma integral_add_meas {f : α → E} (hfm : measurable f) (hμ : integrable f μ) (hν : integrable f ν) :
1265+
lemma integral_add_measure {f : α → E} (hfm : measurable f) (hμ : integrable f μ) (hν : integrable f ν) :
12661266
∫ x, f x ∂(μ + ν) = ∫ x, f x ∂μ + ∫ x, f x ∂ν :=
12671267
begin
1268-
have hfi := hμ.add_meas hν,
1268+
have hfi := hμ.add_measure hν,
12691269
rcases simple_func_sequence_tendsto' hfm hfi with ⟨F, hFi, hFt⟩,
1270-
have hFiμ : ∀ i, integrable (F i) μ := λ i, (hFi i).left_of_add_meas,
1271-
have hFiν : ∀ i, integrable (F i) ν := λ i, (hFi i).right_of_add_meas,
1270+
have hFiμ : ∀ i, integrable (F i) μ := λ i, (hFi i).left_of_add_measure,
1271+
have hFiν : ∀ i, integrable (F i) ν := λ i, (hFi i).right_of_add_measure,
12721272
simp only [← edist_nndist] at hFt,
12731273
have hμν : tendsto (λ i, ∫ x, F i x ∂(μ + ν)) at_top (𝓝 ∫ x, f x ∂(μ + ν)) :=
12741274
tendsto_integral_of_l1 _ hfm hfi (eventually_of_forall $ λ i, (F i).measurable)
@@ -1284,19 +1284,20 @@ begin
12841284
refine tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds hFt (λ _, zero_le _) _,
12851285
exact λ i, lintegral_mono' (measure.le_add_left $ le_refl ν) (le_refl _) },
12861286
apply tendsto_nhds_unique hμν,
1287-
simpa only [← simple_func.integral_eq_integral, *, simple_func.integral_add_meas] using hμ.add hν
1287+
simpa only [← simple_func.integral_eq_integral, *, simple_func.integral_add_measure]
1288+
using hμ.add hν
12881289
end
12891290

1290-
@[simp] lemma integral_zero_meas (f : α → E) : ∫ x, f x ∂0 = 0 :=
1291+
@[simp] lemma integral_zero_measure (f : α → E) : ∫ x, f x ∂0 = 0 :=
12911292
norm_le_zero_iff.1 $ le_trans (norm_integral_le_lintegral_norm f) $ by simp
12921293

1293-
lemma integral_map_meas {β} [measurable_space β] {φ : α → β} (hφ : measurable φ)
1294+
lemma integral_map_measure {β} [measurable_space β] {φ : α → β} (hφ : measurable φ)
12941295
{f : β → E} (hfm : measurable f) :
12951296
∫ y, f y ∂(measure.map φ μ) = ∫ x, f (φ x) ∂μ :=
12961297
begin
12971298
by_cases hfi : integrable f (measure.map φ μ), swap,
12981299
{ rw [integral_non_integrable hfi, integral_non_integrable],
1299-
rwa [← integrable_map_meas hφ hfm] },
1300+
rwa [← integrable_map_measure hφ hfm] },
13001301
rcases simple_func_sequence_tendsto' hfm hfi with ⟨F, hFi, hFt⟩,
13011302
simp only [← edist_nndist] at hFt,
13021303
have hF : tendsto (λ i, ∫ x, F i x ∂(measure.map φ μ)) at_top (𝓝 ∫ x, f x ∂(measure.map φ μ)) :=
@@ -1305,7 +1306,7 @@ begin
13051306
refine tendsto_nhds_unique hF _, clear hF,
13061307
simp only [lintegral_map ((F _).measurable.edist hfm) hφ] at hFt,
13071308
have hFi' := hFi,
1308-
simp only [integrable_map_meas, hφ, hfm, (F _).measurable] at hfi hFi',
1309+
simp only [integrable_map_measure, hφ, hfm, (F _).measurable] at hfi hFi',
13091310
refine (tendsto_integral_of_l1 _ (hfm.comp hφ) hfi
13101311
(eventually_of_forall $ λ i, (F i).measurable.comp hφ)
13111312
(eventually_of_forall $ hFi') hFt).congr (λ n, _),

src/measure_theory/integration.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -977,11 +977,11 @@ calc (∫⁻ a, f a + g a ∂μ) =
977977

978978
lemma lintegral_zero : (∫⁻ a:α, 0 ∂μ) = 0 := by simp
979979

980-
lemma lintegral_smul_meas (c : ennreal) (f : α → ennreal) :
980+
lemma lintegral_smul_measure (c : ennreal) (f : α → ennreal) :
981981
∫⁻ a, f a ∂ (c • μ) = c * ∫⁻ a, f a ∂μ :=
982982
by simp only [lintegral, supr_subtype', simple_func.lintegral_smul, ennreal.mul_supr, smul_eq_mul]
983983

984-
lemma lintegral_sum_meas {ι} (f : α → ennreal) (μ : ι → measure α) :
984+
lemma lintegral_sum_measure {ι} (f : α → ennreal) (μ : ι → measure α) :
985985
∫⁻ a, f a ∂(measure.sum μ) = ∑' i, ∫⁻ a, f a ∂(μ i) :=
986986
begin
987987
simp only [lintegral, supr_subtype', simple_func.lintegral_sum, ennreal.tsum_eq_supr_sum],
@@ -996,11 +996,11 @@ begin
996996
(finset.sum_le_sum $ λ j hj, simple_func.lintegral_mono le_sup_right (le_refl _))⟩
997997
end
998998

999-
lemma lintegral_add_meas (f : α → ennreal) (μ ν : measure α) :
999+
lemma lintegral_add_measure (f : α → ennreal) (μ ν : measure α) :
10001000
∫⁻ a, f a ∂ (μ + ν) = ∫⁻ a, f a ∂μ + ∫⁻ a, f a ∂ν :=
1001-
by simpa [tsum_fintype] using lintegral_sum_meas f (λ b, cond b μ ν)
1001+
by simpa [tsum_fintype] using lintegral_sum_measure f (λ b, cond b μ ν)
10021002

1003-
@[simp] lemma lintegral_zero_meas (f : α → ennreal) : ∫⁻ a, f a ∂0 = 0 :=
1003+
@[simp] lemma lintegral_zero_measure (f : α → ennreal) : ∫⁻ a, f a ∂0 = 0 :=
10041004
bot_unique $ by simp [lintegral]
10051005

10061006
lemma lintegral_finset_sum (s : finset β) {f : β → α → ennreal} (hf : ∀b, measurable (f b)) :
@@ -1352,12 +1352,12 @@ open measure
13521352
lemma lintegral_Union [encodable β] {s : β → set α} (hm : ∀ i, is_measurable (s i))
13531353
(hd : pairwise (disjoint on s)) (f : α → ennreal) :
13541354
∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ :=
1355-
by simp only [measure.restrict_Union hd hm, lintegral_sum_meas]
1355+
by simp only [measure.restrict_Union hd hm, lintegral_sum_measure]
13561356

13571357
lemma lintegral_Union_le [encodable β] (s : β → set α) (f : α → ennreal) :
13581358
∫⁻ a in ⋃ i, s i, f a ∂μ ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
13591359
begin
1360-
rw [← lintegral_sum_meas],
1360+
rw [← lintegral_sum_measure],
13611361
exact lintegral_mono' restrict_Union_le (le_refl _)
13621362
end
13631363

src/measure_theory/l1_space.lean

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -127,40 +127,40 @@ lemma integrable_of_bounded [finite_measure μ] {f : α → β} {C : ℝ} (hC :
127127
integrable f μ :=
128128
(integrable_const C).mono' hC
129129

130-
lemma integrable.mono_meas {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) :
130+
lemma integrable.mono_measure {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) :
131131
integrable f μ :=
132132
lt_of_le_of_lt (lintegral_mono' hμ (le_refl _)) h
133133

134-
lemma integrable.add_meas {f : α → β} (hμ : integrable f μ) (hν : integrable f ν) :
134+
lemma integrable.add_measure {f : α → β} (hμ : integrable f μ) (hν : integrable f ν) :
135135
integrable f (μ + ν) :=
136136
begin
137-
simp only [integrable, lintegral_add_meas] at *,
137+
simp only [integrable, lintegral_add_measure] at *,
138138
exact add_lt_top.2 ⟨hμ, hν⟩
139139
end
140140

141-
lemma integrable.left_of_add_meas {f : α → β} (h : integrable f (μ + ν)) :
141+
lemma integrable.left_of_add_measure {f : α → β} (h : integrable f (μ + ν)) :
142142
integrable f μ :=
143-
h.mono_meas $ measure.le_add_right $ le_refl _
143+
h.mono_measure $ measure.le_add_right $ le_refl _
144144

145-
lemma integrable.right_of_add_meas {f : α → β} (h : integrable f (μ + ν)) :
145+
lemma integrable.right_of_add_measure {f : α → β} (h : integrable f (μ + ν)) :
146146
integrable f ν :=
147-
h.mono_meas $ measure.le_add_left $ le_refl _
147+
h.mono_measure $ measure.le_add_left $ le_refl _
148148

149-
@[simp] lemma integrable_add_meas {f : α → β} :
149+
@[simp] lemma integrable_add_measure {f : α → β} :
150150
integrable f (μ + ν) ↔ integrable f μ ∧ integrable f ν :=
151-
⟨λ h, ⟨h.left_of_add_meas, h.right_of_add_meas⟩, λ h, h.1.add_meas h.2
151+
⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2
152152

153-
lemma integrable.smul_meas {f : α → β} (h : integrable f μ) {c : ennreal} (hc : c < ⊤) :
153+
lemma integrable.smul_measure {f : α → β} (h : integrable f μ) {c : ennreal} (hc : c < ⊤) :
154154
integrable f (c • μ) :=
155155
begin
156-
simp only [integrable, lintegral_smul_meas] at *,
156+
simp only [integrable, lintegral_smul_measure] at *,
157157
exact mul_lt_top hc h
158158
end
159159

160-
@[simp] lemma integrable_zero_meas (f : α → β) : integrable f 0 :=
161-
by simp only [integrable, lintegral_zero_meas, with_top.zero_lt_top]
160+
@[simp] lemma integrable_zero_measure (f : α → β) : integrable f 0 :=
161+
by simp only [integrable, lintegral_zero_measure, with_top.zero_lt_top]
162162

163-
lemma integrable_map_meas {δ} [measurable_space δ] [measurable_space β]
163+
lemma integrable_map_measure {δ} [measurable_space δ] [measurable_space β]
164164
[opens_measurable_space β] {f : α → δ} {g : δ → β}
165165
(hf : measurable f) (hg : measurable g) :
166166
integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ :=

src/measure_theory/set_integral.lean

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -113,22 +113,22 @@ integrable_const_iff.trans $ by rw [measure.restrict_apply_univ]
113113

114114
lemma integrable_on.mono (h : integrable_on f t ν) (hs : s ⊆ t) (hμ : μ ≤ ν) :
115115
integrable_on f s μ :=
116-
h.mono_meas $ measure.restrict_mono hs hμ
116+
h.mono_measure $ measure.restrict_mono hs hμ
117117

118118
lemma integrable_on.mono_set (h : integrable_on f t μ) (hst : s ⊆ t) :
119119
integrable_on f s μ :=
120120
h.mono hst (le_refl _)
121121

122-
lemma integrable_on.mono_meas (h : integrable_on f s ν) (hμ : μ ≤ ν) :
122+
lemma integrable_on.mono_measure (h : integrable_on f s ν) (hμ : μ ≤ ν) :
123123
integrable_on f s μ :=
124124
h.mono (subset.refl _) hμ
125125

126126
lemma integrable_on.mono_set_ae (h : integrable_on f t μ) (hst : s ≤ᵐ[μ] t) :
127127
integrable_on f s μ :=
128-
h.integrable.mono_meas $ restrict_mono_ae hst
128+
h.integrable.mono_measure $ restrict_mono_ae hst
129129

130130
lemma integrable.integrable_on (h : integrable f μ) : integrable_on f s μ :=
131-
h.mono_meas $ measure.restrict_le_self
131+
h.mono_measure $ measure.restrict_le_self
132132

133133
lemma integrable.integrable_on' (h : integrable f (μ.restrict s)) : integrable_on f s μ :=
134134
h
@@ -141,7 +141,7 @@ h.mono_set $ subset_union_right _ _
141141

142142
lemma integrable_on.union (hs : integrable_on f s μ) (ht : integrable_on f t μ) :
143143
integrable_on f (s ∪ t) μ :=
144-
(hs.add_meas ht).mono_meas $ measure.restrict_union_le _ _
144+
(hs.add_measure ht).mono_measure $ measure.restrict_union_le _ _
145145

146146
@[simp] lemma integrable_on_union :
147147
integrable_on f (s ∪ t) μ ↔ integrable_on f s μ ∧ integrable_on f t μ :=
@@ -160,15 +160,15 @@ end
160160
integrable_on f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, integrable_on f (t i) μ :=
161161
integrable_on_finite_union s.finite_to_set
162162

163-
lemma integrable_on.add_meas (hμ : integrable_on f s μ) (hν : integrable_on f s ν) :
163+
lemma integrable_on.add_measure (hμ : integrable_on f s μ) (hν : integrable_on f s ν) :
164164
integrable_on f s (μ + ν) :=
165-
by { delta integrable_on, rw measure.restrict_add, exact hμ.integrable.add_meas hν }
165+
by { delta integrable_on, rw measure.restrict_add, exact hμ.integrable.add_measure hν }
166166

167-
@[simp] lemma integrable_on_add_meas :
167+
@[simp] lemma integrable_on_add_measure :
168168
integrable_on f s (μ + ν) ↔ integrable_on f s μ ∧ integrable_on f s ν :=
169-
⟨λ h, ⟨h.mono_meas (measure.le_add_right (le_refl _)),
170-
h.mono_meas (measure.le_add_left (le_refl _))⟩,
171-
λ h, h.1.add_meas h.2
169+
⟨λ h, ⟨h.mono_measure (measure.le_add_right (le_refl _)),
170+
h.mono_measure (measure.le_add_left (le_refl _))⟩,
171+
λ h, h.1.add_measure h.2
172172

173173
lemma integrable_indicator_iff (hs : is_measurable s) :
174174
integrable (indicator s f) μ ↔ integrable_on f s μ :=
@@ -213,7 +213,7 @@ begin
213213
refine ⟨_, λ h, h.filter_mono inf_le_left⟩,
214214
rintros ⟨s, ⟨t, ht, u, hu, hs⟩, hf⟩,
215215
refine ⟨t, ht, _⟩,
216-
refine hf.integrable.mono_meas (λ v hv, _),
216+
refine hf.integrable.mono_measure (λ v hv, _),
217217
simp only [measure.restrict_apply hv],
218218
refine measure_mono_ae (mem_sets_of_superset hu $ λ x hx, _),
219219
exact λ ⟨hv, ht⟩, ⟨hv, hs ⟨ht, hx⟩⟩
@@ -263,9 +263,9 @@ variables [measurable_space E] [borel_space E] [complete_space E] [second_counta
263263
lemma integral_union (hst : disjoint s t) (hs : is_measurable s) (ht : is_measurable t)
264264
(hfm : measurable f) (hfs : integrable_on f s μ) (hft : integrable_on f t μ) :
265265
∫ x in s ∪ t, f x ∂μ = ∫ x in s, f x ∂μ + ∫ x in t, f x ∂μ :=
266-
by simp only [integrable_on, measure.restrict_union hst hs ht, integral_add_meas hfm hfs hft]
266+
by simp only [integrable_on, measure.restrict_union hst hs ht, integral_add_measure hfm hfs hft]
267267

268-
lemma integral_empty : ∫ x in ∅, f x ∂μ = 0 := by rw [measure.restrict_empty, integral_zero_meas]
268+
lemma integral_empty : ∫ x in ∅, f x ∂μ = 0 := by rw [measure.restrict_empty, integral_zero_measure]
269269

270270
lemma integral_univ : ∫ x in univ, f x ∂μ = ∫ x, f x ∂μ := by rw [measure.restrict_univ]
271271

0 commit comments

Comments
 (0)