Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 23c3981

Browse files
committed
feat(analysis/convex/cone): add inner_dual_cone_eq_Inter_inner_dual_cone_singleton (#15639)
Proof that a dual cone equals the intersection of dual cones of singleton sets. Part of #15637
1 parent 735943a commit 23c3981

File tree

1 file changed

+13
-0
lines changed

1 file changed

+13
-0
lines changed

src/analysis/convex/cone.lean

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -616,4 +616,17 @@ lemma inner_dual_cone_le_inner_dual_cone (h : t ⊆ s) :
616616
lemma pointed_inner_dual_cone : s.inner_dual_cone.pointed :=
617617
λ x hx, by rw inner_zero_right
618618

619+
/-- The dual cone of `s` equals the intersection of dual cones of the points in `s`. -/
620+
lemma inner_dual_cone_eq_Inter_inner_dual_cone_singleton :
621+
(s.inner_dual_cone : set H) = ⋂ i : s, (({i} : set H).inner_dual_cone : set H) :=
622+
begin
623+
simp_rw [set.Inter_coe_set, subtype.coe_mk],
624+
refine set.ext (λ x, iff.intro (λ hx, _) _),
625+
{ refine set.mem_Inter.2 (λ i, set.mem_Inter.2 (λ hi _, _)),
626+
rintro ⟨ ⟩,
627+
exact hx i hi },
628+
{ simp only [set.mem_Inter, convex_cone.mem_coe, mem_inner_dual_cone,
629+
set.mem_singleton_iff, forall_eq, imp_self] }
630+
end
631+
619632
end dual

0 commit comments

Comments
 (0)