@@ -386,10 +386,12 @@ begin
386
386
exact (nhds_within_Ioi_self_ne_bot' ⟨b, hxab.2 ⟩).nonempty_of_mem this
387
387
end
388
388
389
- lemma is_preconnected_Icc_aux (x y : α) (s t : set α) (hxy : x ≤ y)
390
- (hs : is_closed s) (ht : is_closed t) (hab : Icc a b ⊆ s ∪ t)
391
- (hx : x ∈ Icc a b ∩ s) (hy : y ∈ Icc a b ∩ t) : (Icc a b ∩ (s ∩ t)).nonempty :=
389
+ /-- A closed interval in a densely ordered conditionally complete linear order is preconnected. -/
390
+ lemma is_preconnected_Icc : is_preconnected ( Icc a b) :=
391
+ is_preconnected_closed_iff. 2
392
392
begin
393
+ rintros s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩,
394
+ wlog hxy : x ≤ y := le_total x y using [x y s t, y x t s],
393
395
have xyab : Icc x y ⊆ Icc a b := Icc_subset_Icc hx.1 .1 hy.1 .2 ,
394
396
by_contradiction hst,
395
397
suffices : Icc x y ⊆ s,
@@ -405,19 +407,6 @@ begin
405
407
exact λ w ⟨wt, wzy⟩, (this wzy).elim id (λ h, (wt h).elim)
406
408
end
407
409
408
- /-- A closed interval in a densely ordered conditionally complete linear order is preconnected. -/
409
- lemma is_preconnected_Icc : is_preconnected (Icc a b) :=
410
- is_preconnected_closed_iff.2
411
- begin
412
- rintros s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩,
413
- -- This used to use `wlog`, but it was causing timeouts.
414
- cases le_total x y,
415
- { exact is_preconnected_Icc_aux x y s t h hs ht hab hx hy, },
416
- { rw inter_comm s t,
417
- rw union_comm s t at hab,
418
- exact is_preconnected_Icc_aux y x t s h ht hs hab hy hx, },
419
- end
420
-
421
410
lemma is_preconnected_interval : is_preconnected (interval a b) := is_preconnected_Icc
422
411
423
412
lemma set.ord_connected.is_preconnected {s : set α} (h : s.ord_connected) :
0 commit comments