Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 23e8ac7

Browse files
jcommelinmergify[bot]
authored andcommitted
feat(ring_theory/algebra): elementary simp-lemmas for aeval (#1795)
1 parent 3a10c60 commit 23e8ac7

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

src/ring_theory/algebra.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -337,6 +337,10 @@ def aeval : polynomial R →ₐ[R] A :=
337337

338338
theorem aeval_def (p : polynomial R) : aeval R A x p = eval₂ (algebra_map A) x p := rfl
339339

340+
@[simp] lemma aeval_X : aeval R A x X = x := eval₂_X _ x
341+
342+
@[simp] lemma aeval_C (r : R) : aeval R A x (C r) = algebra_map A r := eval₂_C _ x
343+
340344
instance aeval.is_ring_hom : is_ring_hom (aeval R A x) :=
341345
by apply_instance
342346

@@ -366,6 +370,10 @@ def aeval : mv_polynomial σ R →ₐ[R] A :=
366370

367371
theorem aeval_def (p : mv_polynomial σ R) : aeval R A σ p = eval₂ (algebra_map A) subtype.val p := rfl
368372

373+
@[simp] lemma aeval_X (s : σ) : aeval R A σ (X s) = s := eval₂_X _ _ _
374+
375+
@[simp] lemma aeval_C (r : R) : aeval R A σ (C r) = algebra_map A r := eval₂_C _ _ _
376+
369377
instance aeval.is_ring_hom : is_ring_hom (aeval R A σ) :=
370378
by apply_instance
371379

0 commit comments

Comments
 (0)