@@ -158,10 +158,6 @@ begin
158
158
... = nat_abs a / nat_abs b : by rw int.div_mul_cancel H,
159
159
end
160
160
161
- theorem nat_abs_dvd_abs_iff {i j : ℤ} : i.nat_abs ∣ j.nat_abs ↔ i ∣ j :=
162
- ⟨assume (H : i.nat_abs ∣ j.nat_abs), dvd_nat_abs.mp (nat_abs_dvd.mp (coe_nat_dvd.mpr H)),
163
- assume H : (i ∣ j), coe_nat_dvd.mp (dvd_nat_abs.mpr (nat_abs_dvd.mpr H))⟩
164
-
165
161
lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul {p : ℕ} (p_prime : nat.prime p) {m n : ℤ} {k l : ℕ}
166
162
(hpm : ↑(p ^ k) ∣ m)
167
163
(hpn : ↑(p ^ l) ∣ n) (hpmn : ↑(p ^ (k+l+1 )) ∣ m*n) : ↑(p ^ (k+1 )) ∣ m ∨ ↑(p ^ (l+1 )) ∣ n :=
@@ -201,7 +197,7 @@ theorem gcd_dvd_right (i j : ℤ) : (gcd i j : ℤ) ∣ j :=
201
197
dvd_nat_abs.mp $ coe_nat_dvd.mpr $ nat.gcd_dvd_right _ _
202
198
203
199
theorem dvd_gcd {i j k : ℤ} (h1 : k ∣ i) (h2 : k ∣ j) : k ∣ gcd i j :=
204
- nat_abs_dvd.1 $ coe_nat_dvd.2 $ nat.dvd_gcd (nat_abs_dvd_abs_iff .2 h1) (nat_abs_dvd_abs_iff .2 h2)
200
+ nat_abs_dvd.1 $ coe_nat_dvd.2 $ nat.dvd_gcd (nat_abs_dvd_iff_dvd .2 h1) (nat_abs_dvd_iff_dvd .2 h2)
205
201
206
202
theorem gcd_mul_lcm (i j : ℤ) : gcd i j * lcm i j = nat_abs (i * j) :=
207
203
by rw [int.gcd, int.lcm, nat.gcd_mul_lcm, nat_abs_mul]
246
242
theorem gcd_div {i j k : ℤ} (H1 : k ∣ i) (H2 : k ∣ j) :
247
243
gcd (i / k) (j / k) = gcd i j / nat_abs k :=
248
244
by rw [gcd, nat_abs_div i k H1, nat_abs_div j k H2];
249
- exact nat.gcd_div (nat_abs_dvd_abs_iff .mpr H1) (nat_abs_dvd_abs_iff .mpr H2)
245
+ exact nat.gcd_div (nat_abs_dvd_iff_dvd .mpr H1) (nat_abs_dvd_iff_dvd .mpr H2)
250
246
251
247
theorem gcd_div_gcd_div_gcd {i j : ℤ} (H : 0 < gcd i j) :
252
248
gcd (i / gcd i j) (j / gcd i j) = 1 :=
@@ -275,7 +271,7 @@ gcd_dvd_gcd_of_dvd_right _ (dvd_mul_right _ _)
275
271
276
272
theorem gcd_eq_left {i j : ℤ} (H : i ∣ j) : gcd i j = nat_abs i :=
277
273
nat.dvd_antisymm (by unfold gcd; exact nat.gcd_dvd_left _ _)
278
- (by unfold gcd; exact nat.dvd_gcd dvd_rfl (nat_abs_dvd_abs_iff .mpr H))
274
+ (by unfold gcd; exact nat.dvd_gcd dvd_rfl (nat_abs_dvd_iff_dvd .mpr H))
279
275
280
276
theorem gcd_eq_right {i j : ℤ} (H : j ∣ i) : gcd i j = nat_abs j :=
281
277
by rw [gcd_comm, gcd_eq_left H]
@@ -300,10 +296,10 @@ let ⟨m', n', h⟩ := exists_gcd_one H in ⟨_, m', n', H, h⟩
300
296
theorem pow_dvd_pow_iff {m n : ℤ} {k : ℕ} (k0 : 0 < k) : m ^ k ∣ n ^ k ↔ m ∣ n :=
301
297
begin
302
298
refine ⟨λ h, _, λ h, pow_dvd_pow_of_dvd h _⟩,
303
- apply int.nat_abs_dvd_abs_iff .mp,
299
+ apply int.nat_abs_dvd_iff_dvd .mp,
304
300
apply (nat.pow_dvd_pow_iff k0).mp,
305
301
rw [← int.nat_abs_pow, ← int.nat_abs_pow],
306
- exact int.nat_abs_dvd_abs_iff .mpr h
302
+ exact int.nat_abs_dvd_iff_dvd .mpr h
307
303
end
308
304
309
305
/-! ### lcm -/
@@ -340,7 +336,7 @@ begin
340
336
rw int.lcm,
341
337
intros hi hj,
342
338
exact coe_nat_dvd_left.mpr
343
- (nat.lcm_dvd (nat_abs_dvd_abs_iff .mpr hi) (nat_abs_dvd_abs_iff .mpr hj))
339
+ (nat.lcm_dvd (nat_abs_dvd_iff_dvd .mpr hi) (nat_abs_dvd_iff_dvd .mpr hj))
344
340
end
345
341
346
342
end int
0 commit comments