Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 26e24c7

Browse files
committed
feat(set_theory/surreal/basic): < is transitive on numeric games (#13812)
1 parent 922717e commit 26e24c7

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

src/set_theory/surreal/basic.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -89,6 +89,16 @@ end
8989
theorem le_of_lt {x y : pgame} (ox : numeric x) (oy : numeric y) (h : x < y) : x ≤ y :=
9090
not_lt.1 (lt_asymm ox oy h)
9191

92+
/-- `<` is transitive when both sides of the left inequality are numeric -/
93+
theorem lt_trans {x y z : pgame} (ox : numeric x) (oy : numeric y) (h₁ : x < y)
94+
(h₂ : y < z) : x < z :=
95+
lt_of_le_of_lt (le_of_lt ox oy h₁) h₂
96+
97+
/-- `<` is transitive when both sides of the right inequality are numeric -/
98+
theorem lt_trans' {x y z : pgame} (oy : numeric y) (oz : numeric z) (h₁ : x < y)
99+
(h₂ : y < z) : x < z :=
100+
lt_of_lt_of_le h₁ (le_of_lt oy oz h₂)
101+
92102
/-- On numeric pre-games, `<` and `≤` satisfy the axioms of a partial order (even though they
93103
don't on all pre-games). -/
94104
theorem lt_iff_le_not_le {x y : pgame} (ox : numeric x) (oy : numeric y) :

0 commit comments

Comments
 (0)