You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jul 24, 2024. It is now read-only.
The actual definition says that `a` is equal to some `u : units M`, where
203
203
`units M` is a bundled version of `is_unit`. -/
204
204
@[to_additive is_add_unit "An element `a : M` of an add_monoid is an `add_unit` if it has a two-sided additive inverse. The actual definition says that `a` is equal to some `u : add_units M`, where `add_units M` is a bundled version of `is_add_unit`."]
205
-
defis_unit [monoid M] (a : M) : Prop := ∃ u : units M, a = u
205
+
defis_unit [monoid M] (a : M) : Prop := ∃ u : units M, (u : M) = a
206
206
207
207
@[simp, to_additive is_add_unit_add_unit]
208
208
lemmais_unit_unit [monoid M] (u : units M) : is_unit (u : M) := ⟨u, rfl⟩
@@ -229,9 +229,9 @@ theorem units.is_unit_mul_units [monoid M] (a : M) (u : units M) :
229
229
is_unit (a * u) ↔ is_unit a :=
230
230
iff.intro
231
231
(assume ⟨v, hv⟩,
232
-
have is_unit (a * ↑u * ↑u⁻¹), by existsi v * u⁻¹; rw [hv, units.coe_mul],
232
+
have is_unit (a * ↑u * ↑u⁻¹), by existsi v * u⁻¹; rw [←hv, units.coe_mul],
233
233
by rwa [mul_assoc, units.mul_inv, mul_one] atthis)
234
-
(assume ⟨v, hv⟩, hv.symm ▸ ⟨v * u, (units.coe_mul v u).symm⟩)
234
+
(assume ⟨v, hv⟩, hv ▸ ⟨v * u, (units.coe_mul v u).symm⟩)
Copy file name to clipboardExpand all lines: src/algebra/group/units_hom.lean
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -94,7 +94,7 @@ to `f : M →* units N`. See also `units.lift_right` for a computable version. -
94
94
@[to_additive "If a homomorphism `f : M →+ N` sends each element to an `is_add_unit`, then it can be lifted to `f : M →+ add_units N`. See also `add_units.lift_right` for a computable version."]
95
95
noncomputabledefis_unit.lift_right [monoid M] [monoid N] (f : M →* N)
0 commit comments