@@ -29,24 +29,8 @@ def functoriality_is_left_adjoint :
29
29
{ right := (cocones.functoriality G) ⋙ (cocones.precompose
30
30
(K.right_unitor.inv ≫ (whisker_left K adj.unit) ≫ (associator _ _ _).inv)),
31
31
adj := mk_of_unit_counit
32
- { unit :=
33
- { app := λ c,
34
- { hom := adj.unit.app c.X,
35
- w' := λ j, by have := adj.unit.naturality (c.ι.app j); tidy },
36
- naturality' := λ _ _ f, by have := adj.unit.naturality (f.hom); tidy },
37
- counit :=
38
- { app := λ c,
39
- { hom := adj.counit.app c.X,
40
- w' :=
41
- begin
42
- intro j,
43
- dsimp,
44
- erw [category.comp_id, category.id_comp, F.map_comp, category.assoc,
45
- adj.counit.naturality (c.ι.app j), ← category.assoc,
46
- adj.left_triangle_components, category.id_comp],
47
- refl,
48
- end },
49
- naturality' := λ _ _ f, by have := adj.counit.naturality (f.hom); tidy } } }
32
+ { unit := { app := λ c, { hom := adj.unit.app c.X } },
33
+ counit := { app := λ c, { hom := adj.counit.app c.X } } } }
50
34
51
35
/-- A left adjoint preserves colimits. -/
52
36
def left_adjoint_preserves_colimits : preserves_colimits F :=
@@ -67,24 +51,8 @@ def functoriality_is_right_adjoint :
67
51
{ left := (cones.functoriality F) ⋙ (cones.postcompose
68
52
((associator _ _ _).hom ≫ (whisker_left K adj.counit) ≫ K.right_unitor.hom)),
69
53
adj := mk_of_unit_counit
70
- { unit :=
71
- { app := λ c,
72
- { hom := adj.unit.app c.X,
73
- w' :=
74
- begin
75
- intro j,
76
- dsimp,
77
- erw [category.comp_id, category.id_comp, G.map_comp, ← category.assoc,
78
- ← adj.unit.naturality (c.π.app j), category.assoc,
79
- adj.right_triangle_components, category.comp_id],
80
- refl,
81
- end },
82
- naturality' := λ _ _ f, by have := adj.unit.naturality (f.hom); tidy },
83
- counit :=
84
- { app := λ c,
85
- { hom := adj.counit.app c.X,
86
- w' := λ j, by have := adj.counit.naturality (c.π.app j); tidy },
87
- naturality' := λ _ _ f, by have := adj.counit.naturality (f.hom); tidy } } }
54
+ { unit := { app := λ c, { hom := adj.unit.app c.X, } },
55
+ counit := { app := λ c, { hom := adj.counit.app c.X, } } } }
88
56
89
57
/-- A right adjoint preserves limits. -/
90
58
def right_adjoint_preserves_limits : preserves_limits G :=
@@ -110,12 +78,7 @@ nat_iso.of_components (λ Y,
110
78
erw [← adj.hom_equiv_naturality_left_symm, ← adj.hom_equiv_naturality_right_symm, t.naturality],
111
79
dsimp, simp
112
80
end } } )
113
- begin
114
- intros Y₁ Y₂ f,
115
- ext1 t,
116
- ext1 j,
117
- apply adj.hom_equiv_naturality_right
118
- end
81
+ (by tidy)
119
82
120
83
-- Note: this is natural in K, but we do not yet have the tools to formulate that.
121
84
def cones_iso {J : Type v} [small_category J] {K : J ⥤ D} :
0 commit comments