|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Alexander Bentkamp. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Alexander Bentkamp |
| 5 | +-/ |
| 6 | +import analysis.inner_product_space.spectrum |
| 7 | + |
| 8 | +/-! # Hermitian matrices |
| 9 | +
|
| 10 | +This file defines hermitian matrices and some basic results about them. |
| 11 | +
|
| 12 | +## Main definition |
| 13 | +
|
| 14 | + * `matrix.is_hermitian `: a matrix `A : matrix n n α` is hermitian if `Aᴴ = A`. |
| 15 | +
|
| 16 | +## Tags |
| 17 | +
|
| 18 | +self-adjoint matrix, hermitian matrix |
| 19 | +
|
| 20 | +-/ |
| 21 | + |
| 22 | +namespace matrix |
| 23 | + |
| 24 | +variables {α β : Type*} {m n : Type*} {A : matrix n n α} |
| 25 | + |
| 26 | +open_locale matrix |
| 27 | + |
| 28 | +local notation `⟪`x`, `y`⟫` := @inner α (pi_Lp 2 (λ (_ : n), α)) _ x y |
| 29 | + |
| 30 | +section non_unital_semiring |
| 31 | + |
| 32 | +variables [non_unital_semiring α] [star_ring α] [non_unital_semiring β] [star_ring β] |
| 33 | + |
| 34 | +/-- A matrix is hermitian if it is equal to its conjugate transpose. On the reals, this definition |
| 35 | +captures symmetric matrices. -/ |
| 36 | +def is_hermitian (A : matrix n n α) : Prop := Aᴴ = A |
| 37 | + |
| 38 | +lemma is_hermitian.eq {A : matrix n n α} (h : A.is_hermitian) : Aᴴ = A := h |
| 39 | + |
| 40 | +@[ext] |
| 41 | +lemma is_hermitian.ext {A : matrix n n α} : (∀ i j, star (A j i) = A i j) → A.is_hermitian := |
| 42 | +by { intros h, ext i j, exact h i j } |
| 43 | + |
| 44 | +lemma is_hermitian.apply {A : matrix n n α} (h : A.is_hermitian) (i j : n) : star (A j i) = A i j := |
| 45 | +by { unfold is_hermitian at h, rw [← h, conj_transpose_apply, star_star, h] } |
| 46 | + |
| 47 | +lemma is_hermitian.ext_iff {A : matrix n n α} : A.is_hermitian ↔ ∀ i j, star (A j i) = A i j := |
| 48 | +⟨is_hermitian.apply, is_hermitian.ext⟩ |
| 49 | + |
| 50 | +lemma is_hermitian_mul_conj_transpose_self [fintype n] (A : matrix n n α) : |
| 51 | + (A ⬝ Aᴴ).is_hermitian := |
| 52 | +by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose] |
| 53 | + |
| 54 | +lemma is_hermitian_transpose_mul_self [fintype n] (A : matrix n n α) : |
| 55 | + (Aᴴ ⬝ A).is_hermitian := |
| 56 | +by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose] |
| 57 | + |
| 58 | +lemma is_hermitian_add_transpose_self (A : matrix n n α) : |
| 59 | + (A + Aᴴ).is_hermitian := |
| 60 | +by simp [is_hermitian, add_comm] |
| 61 | + |
| 62 | +lemma is_hermitian_transpose_add_self (A : matrix n n α) : |
| 63 | + (Aᴴ + A).is_hermitian := |
| 64 | +by simp [is_hermitian, add_comm] |
| 65 | + |
| 66 | +@[simp] lemma is_hermitian_zero : |
| 67 | + (0 : matrix n n α).is_hermitian := |
| 68 | +conj_transpose_zero |
| 69 | + |
| 70 | +-- TODO: move |
| 71 | +lemma conj_transpose_map {A : matrix n n α} (f : α → β) (hf : f ∘ star = star ∘ f) : |
| 72 | + Aᴴ.map f = (A.map f)ᴴ := |
| 73 | +by rw [conj_transpose, conj_transpose, ←transpose_map, map_map, map_map, hf] |
| 74 | + |
| 75 | +@[simp] lemma is_hermitian.map {A : matrix n n α} (h : A.is_hermitian) (f : α → β) |
| 76 | + (hf : f ∘ star = star ∘ f) : |
| 77 | + (A.map f).is_hermitian := |
| 78 | +by {refine (conj_transpose_map f hf).symm.trans _, rw h.eq } |
| 79 | + |
| 80 | +@[simp] lemma is_hermitian.transpose {A : matrix n n α} (h : A.is_hermitian) : |
| 81 | + Aᵀ.is_hermitian := |
| 82 | +by { rw [is_hermitian, conj_transpose, transpose_map], congr, exact h } |
| 83 | + |
| 84 | +@[simp] lemma is_hermitian.conj_transpose {A : matrix n n α} (h : A.is_hermitian) : |
| 85 | + Aᴴ.is_hermitian := |
| 86 | +h.transpose.map _ rfl |
| 87 | + |
| 88 | +@[simp] lemma is_hermitian.add {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) : |
| 89 | + (A + B).is_hermitian := |
| 90 | +(conj_transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl) |
| 91 | + |
| 92 | +@[simp] lemma is_hermitian.minor {A : matrix n n α} (h : A.is_hermitian) (f : m → n) : |
| 93 | + (A.minor f f).is_hermitian := |
| 94 | +(conj_transpose_minor _ _ _).trans (h.symm ▸ rfl) |
| 95 | + |
| 96 | +/-- The real diagonal matrix `diagonal v` is hermitian. -/ |
| 97 | +@[simp] lemma is_hermitian_diagonal [decidable_eq n] (v : n → ℝ) : |
| 98 | + (diagonal v).is_hermitian := |
| 99 | +diagonal_conj_transpose _ |
| 100 | + |
| 101 | +/-- A block matrix `A.from_blocks B C D` is hermitian, |
| 102 | + if `A` and `D` are hermitian and `Bᴴ = C`. -/ |
| 103 | +lemma is_hermitian.from_blocks |
| 104 | + {A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} |
| 105 | + (hA : A.is_hermitian) (hBC : Bᴴ = C) (hD : D.is_hermitian) : |
| 106 | + (A.from_blocks B C D).is_hermitian := |
| 107 | +begin |
| 108 | + have hCB : Cᴴ = B, {rw ← hBC, simp}, |
| 109 | + unfold matrix.is_hermitian, |
| 110 | + rw from_blocks_conj_transpose, |
| 111 | + congr; |
| 112 | + assumption |
| 113 | +end |
| 114 | + |
| 115 | +/-- This is the `iff` version of `matrix.is_hermitian.from_blocks`. -/ |
| 116 | +lemma is_hermitian_from_blocks_iff |
| 117 | + {A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} : |
| 118 | + (A.from_blocks B C D).is_hermitian ↔ A.is_hermitian ∧ Bᴴ = C ∧ Cᴴ = B ∧ D.is_hermitian := |
| 119 | +⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h, |
| 120 | + congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩, |
| 121 | + λ ⟨hA, hBC, hCB, hD⟩, is_hermitian.from_blocks hA hBC hD⟩ |
| 122 | + |
| 123 | +end non_unital_semiring |
| 124 | + |
| 125 | +section semiring |
| 126 | + |
| 127 | +variables [semiring α] [star_ring α] [semiring β] [star_ring β] |
| 128 | + |
| 129 | +@[simp] lemma is_hermitian_one [decidable_eq n] : |
| 130 | + (1 : matrix n n α).is_hermitian := |
| 131 | +conj_transpose_one |
| 132 | + |
| 133 | +end semiring |
| 134 | + |
| 135 | +section ring |
| 136 | + |
| 137 | +variables [ring α] [star_ring α] [ring β] [star_ring β] |
| 138 | + |
| 139 | +@[simp] lemma is_hermitian.neg {A : matrix n n α} (h : A.is_hermitian) : |
| 140 | + (-A).is_hermitian := |
| 141 | +(conj_transpose_neg _).trans (congr_arg _ h) |
| 142 | + |
| 143 | +@[simp] lemma is_hermitian.sub {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) : |
| 144 | + (A - B).is_hermitian := |
| 145 | +(conj_transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl) |
| 146 | + |
| 147 | +end ring |
| 148 | + |
| 149 | +section is_R_or_C |
| 150 | + |
| 151 | +variables [is_R_or_C α] [is_R_or_C β] |
| 152 | + |
| 153 | +/-- A matrix is hermitian iff the corresponding linear map is self adjoint. -/ |
| 154 | +lemma is_hermitian_iff_is_self_adjoint [fintype n] [decidable_eq n] {A : matrix n n α} : |
| 155 | + is_hermitian A ↔ inner_product_space.is_self_adjoint |
| 156 | + ((pi_Lp.linear_equiv α (λ _ : n, α)).symm.conj A.to_lin' : module.End α (pi_Lp 2 _)) := |
| 157 | +begin |
| 158 | + rw [inner_product_space.is_self_adjoint, (pi_Lp.equiv 2 (λ _ : n, α)).symm.surjective.forall₂], |
| 159 | + simp only [linear_equiv.conj_apply, linear_map.comp_apply, linear_equiv.coe_coe, |
| 160 | + pi_Lp.linear_equiv_apply, pi_Lp.linear_equiv_symm_apply, linear_equiv.symm_symm], |
| 161 | + simp_rw [euclidean_space.inner_eq_star_dot_product, equiv.apply_symm_apply, to_lin'_apply, |
| 162 | + star_mul_vec, dot_product_mul_vec], |
| 163 | + split, |
| 164 | + { rintro (h : Aᴴ = A) x y, |
| 165 | + rw h }, |
| 166 | + { intro h, |
| 167 | + ext i j, |
| 168 | + simpa only [(pi.single_star i 1).symm, ← star_mul_vec, mul_one, dot_product_single, |
| 169 | + single_vec_mul, star_one, one_mul] using |
| 170 | + h (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) i 1) |
| 171 | + (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) j 1) } |
| 172 | +end |
| 173 | + |
| 174 | +end is_R_or_C |
| 175 | + |
| 176 | +end matrix |
0 commit comments