Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 29d0c63

Browse files
committed
feat(measure_theory): add a few integration-related lemmas (#7821)
These are lemmas I proved while working on #7164. Some of them are actually not used anymore in that PR because I'm refactoring it, but I thought they would be useful anyway, so here there are.
1 parent ef7c335 commit 29d0c63

File tree

3 files changed

+37
-2
lines changed

3 files changed

+37
-2
lines changed

src/measure_theory/integration.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -903,6 +903,16 @@ begin
903903
exact h a,
904904
end
905905

906+
lemma lintegral_mono_set ⦃μ : measure α⦄
907+
{s t : set α} {f : α → ℝ≥0∞} (hst : s ⊆ t) :
908+
∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
909+
lintegral_mono' (measure.restrict_mono hst (le_refl μ)) (le_refl f)
910+
911+
lemma lintegral_mono_set' ⦃μ : measure α⦄
912+
{s t : set α} {f : α → ℝ≥0∞} (hst : s ≤ᵐ[μ] t) :
913+
∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
914+
lintegral_mono' (measure.restrict_mono' hst (le_refl μ)) (le_refl f)
915+
906916
lemma monotone_lintegral (μ : measure α) : monotone (lintegral μ) :=
907917
lintegral_mono
908918

src/measure_theory/measure_space.lean

Lines changed: 11 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -974,6 +974,10 @@ by { rw [restrict, restrictₗ], convert le_lift_linear_apply _ t, simp }
974974
(μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
975975
ext $ λ u hu, by simp [*, set.inter_assoc]
976976

977+
lemma restrict_comm (hs : measurable_set s) (ht : measurable_set t) :
978+
(μ.restrict t).restrict s = (μ.restrict s).restrict t :=
979+
by rw [restrict_restrict hs, restrict_restrict ht, inter_comm]
980+
977981
lemma restrict_apply_eq_zero (ht : measurable_set t) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 :=
978982
by rw [restrict_apply ht]
979983

@@ -1070,14 +1074,19 @@ by rw [restrictₗ_apply, restrict_apply ht, linear_map.comp_apply,
10701074
(measurable_subtype_coe ht), subtype.image_preimage_coe]
10711075

10721076
/-- Restriction of a measure to a subset is monotone both in set and in measure. -/
1073-
@[mono] lemma restrict_mono ⦃s s' : set α⦄ (hs : s ⊆ s') ⦃μ ν : measure α⦄ (hμν : μ ≤ ν) :
1077+
lemma restrict_mono' ⦃s s' : set α⦄ ⦃μ ν : measure α⦄ (hs : s ≤ᵐ[μ] s') (hμν : μ ≤ ν) :
10741078
μ.restrict s ≤ ν.restrict s' :=
10751079
assume t ht,
10761080
calc μ.restrict s t = μ (t ∩ s) : restrict_apply ht
1077-
... ≤ μ (t ∩ s') : measure_mono $ inter_subset_inter_right _ hs
1081+
... ≤ μ (t ∩ s') : measure_mono_ae $ hs.mono $ λ x hx ⟨hxt, hxs⟩, ⟨hxt, hx hxs⟩
10781082
... ≤ ν (t ∩ s') : le_iff'.1 hμν (t ∩ s')
10791083
... = ν.restrict s' t : (restrict_apply ht).symm
10801084

1085+
/-- Restriction of a measure to a subset is monotone both in set and in measure. -/
1086+
@[mono] lemma restrict_mono ⦃s s' : set α⦄ (hs : s ⊆ s') ⦃μ ν : measure α⦄ (hμν : μ ≤ ν) :
1087+
μ.restrict s ≤ ν.restrict s' :=
1088+
restrict_mono' (ae_of_all _ hs) hμν
1089+
10811090
lemma restrict_le_self : μ.restrict s ≤ μ :=
10821091
assume t ht,
10831092
calc μ.restrict s t = μ (t ∩ s) : restrict_apply ht

src/measure_theory/set_integral.lean

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -179,6 +179,10 @@ h.mono_measure $ measure.restrict_le_self
179179
lemma integrable.integrable_on' (h : integrable f (μ.restrict s)) : integrable_on f s μ :=
180180
h
181181

182+
lemma integrable_on.restrict (h : integrable_on f s μ) (hs : measurable_set s) :
183+
integrable_on f s (μ.restrict t) :=
184+
by { rw [integrable_on, measure.restrict_restrict hs], exact h.mono_set (inter_subset_left _ _) }
185+
182186
lemma integrable_on.left_of_union (h : integrable_on f (s ∪ t) μ) : integrable_on f s μ :=
183187
h.mono_set $ subset_union_left _ _
184188

@@ -537,6 +541,18 @@ set_integral_nonneg_of_ae_restrict ((ae_restrict_iff' hs).mpr (ae_of_all μ hf))
537541

538542
end nonneg
539543

544+
lemma set_integral_mono_set {α : Type*} [measurable_space α] {μ : measure α}
545+
{s t : set α} {f : α → ℝ} (hfi : integrable f μ) (hf : 0 ≤ᵐ[μ] f) (hst : s ≤ᵐ[μ] t) :
546+
∫ x in s, f x ∂μ ≤ ∫ x in t, f x ∂μ :=
547+
begin
548+
repeat { rw integral_eq_lintegral_of_nonneg_ae (ae_restrict_of_ae hf)
549+
(hfi.1.mono_measure measure.restrict_le_self) },
550+
rw ennreal.to_real_le_to_real
551+
(ne_of_lt $ (has_finite_integral_iff_of_real (ae_restrict_of_ae hf)).mp hfi.integrable_on.2)
552+
(ne_of_lt $ (has_finite_integral_iff_of_real (ae_restrict_of_ae hf)).mp hfi.integrable_on.2),
553+
exact (lintegral_mono_set' hst),
554+
end
555+
540556
end measure_theory
541557

542558
open measure_theory asymptotics metric

0 commit comments

Comments
 (0)