@@ -278,7 +278,7 @@ notation `∫` binders ` in ` a `..` b `, ` r:(scoped:60 f, interval_integral f
278
278
279
279
namespace interval_integral
280
280
281
- section
281
+ section basic
282
282
283
283
variables {a b c d : α} {f g : α → E} {μ : measure α}
284
284
@@ -370,39 +370,109 @@ lemma integral_smul_measure (c : ℝ≥0∞) :
370
370
∫ x in a..b, f x ∂(c • μ) = c.to_real • ∫ x in a..b, f x ∂μ :=
371
371
by simp only [interval_integral, measure.restrict_smul, integral_smul_measure, smul_sub]
372
372
373
- lemma integral_comp_add_right {a b : ℝ} (c : ℝ) {f : ℝ → E} (hfm : ae_measurable f) :
374
- ∫ x in a..b, f (x + c) = ∫ x in a+c..b+c, f x :=
375
- have A : ae_measurable f (measure.map (λ x, x + c) volume), by rwa [real.map_volume_add_right],
376
- calc ∫ x in a..b, f (x + c) = ∫ x in a+c..b+c, f x ∂(measure.map (λ x, x + c) volume) :
377
- by simp only [interval_integral, set_integral_map measurable_set_Ioc A (measurable_add_const _),
378
- preimage_add_const_Ioc, add_sub_cancel]
379
- ... = ∫ x in a+c..b+c, f x : by rw [real.map_volume_add_right]
373
+ end basic
374
+
375
+ section comp
380
376
381
- lemma integral_comp_mul_right {a b c : ℝ} {f : ℝ → E} (hc : 0 < c) (hfm : ae_measurable f) :
377
+ variables {a b c : ℝ} (f : ℝ → E)
378
+
379
+ lemma integral_comp_mul_right_of_pos (hc : 0 < c) :
382
380
∫ x in a..b, f (x * c) = c⁻¹ • ∫ x in a*c..b*c, f x :=
383
381
begin
384
- have A : ae_measurable f (measure.map (λ (x : ℝ), x*c) volume),
385
- by { rw real.map_volume_mul_right (ne_of_gt hc), exact hfm.smul_measure _ },
386
- conv_rhs { rw [← real.smul_map_volume_mul_right (ne_of_gt hc)] },
382
+ have A : closed_embedding (λ x, x * c) := (homeomorph.mul_right' c hc.ne').closed_embedding,
383
+ conv_rhs { rw [← real.smul_map_volume_mul_right hc.ne'] },
387
384
rw [integral_smul_measure],
388
- simp only [interval_integral, set_integral_map measurable_set_Ioc A (measurable_mul_const _) ,
389
- hc, preimage_mul_const_Ioc, mul_div_cancel _ (ne_of_gt hc), abs_of_pos ,
390
- ennreal.to_real_of_real (le_of_lt hc) , inv_smul_smul' (ne_of_gt hc) ],
385
+ simp only [interval_integral, hc, preimage_mul_const_Ioc, mul_div_cancel _ hc.ne' ,
386
+ abs_of_pos, set_integral_map_of_closed_embedding measurable_set_Ioc A ,
387
+ ennreal.to_real_of_real hc.le , inv_smul_smul' hc.ne' ],
391
388
end
392
389
393
- lemma integral_comp_mul_left {a b c : ℝ} {f : ℝ → E} (hc : 0 < c) (hfm : ae_measurable f) :
390
+ lemma integral_comp_neg : ∫ x in a..b, f (-x) = ∫ x in -b..-a, f x :=
391
+ begin
392
+ have A : closed_embedding (λ x, -x) := (homeomorph.neg ℝ).closed_embedding,
393
+ conv_rhs { rw ← real.map_volume_neg },
394
+ simp only [interval_integral, set_integral_map_of_closed_embedding measurable_set_Ioc A,
395
+ neg_preimage, preimage_neg_Ioc, neg_neg, restrict_congr_set Ico_ae_eq_Ioc],
396
+ end
397
+
398
+ lemma integral_comp_mul_right_of_neg (hc : c < 0 ) :
399
+ ∫ x in a..b, f (x * c) = c⁻¹ • ∫ x in a*c..b*c, f x :=
400
+ begin
401
+ let g := λ x, f (-x),
402
+ have h : (λ x, f (x * c)) = λ x, g (x * -c) := by simp_rw [g, neg_mul_eq_mul_neg, neg_neg],
403
+ rw [h, integral_comp_mul_right_of_pos g (neg_pos.mpr hc), integral_comp_neg f, integral_symm],
404
+ simp only [neg_mul_eq_mul_neg, neg_neg, inv_neg, neg_smul, ← smul_neg],
405
+ end
406
+
407
+ lemma integral_comp_mul_right (hc : c ≠ 0 ) :
408
+ ∫ x in a..b, f (x * c) = c⁻¹ • ∫ x in a*c..b*c, f x :=
409
+ begin
410
+ cases lt_or_gt_of_ne hc with hneg hpos,
411
+ exacts [integral_comp_mul_right_of_neg f hneg, integral_comp_mul_right_of_pos f hpos],
412
+ end
413
+
414
+ lemma integral_comp_mul_left (hc : c ≠ 0 ) :
394
415
∫ x in a..b, f (c * x) = c⁻¹ • ∫ x in c*a..c*b, f x :=
395
- by simpa only [mul_comm c] using integral_comp_mul_right hc hfm
416
+ by simpa only [mul_comm c] using integral_comp_mul_right f hc
417
+
418
+ lemma integral_comp_div (hc : c ≠ 0 ) :
419
+ ∫ x in a..b, f (x / c) = c • ∫ x in a/c..b/c, f x :=
420
+ by simpa only [inv_inv'] using integral_comp_mul_right f (inv_ne_zero hc)
396
421
397
- lemma integral_comp_neg {a b : ℝ} {f : ℝ → E} (hfm : ae_measurable f) :
398
- ∫ x in a..b, f (-x) = ∫ x in -b..-a, f x :=
422
+ lemma integral_comp_add_right (d : ℝ) :
423
+ ∫ x in a..b, f (x + d) = ∫ x in a+d..b+d, f x :=
424
+ have A : closed_embedding (λ x, x + d) := (homeomorph.add_right d).closed_embedding,
425
+ calc ∫ x in a..b, f (x + d) = ∫ x in a+d..b+d, f x ∂(measure.map (λ x, x + d) volume) :
426
+ by simp only [interval_integral, set_integral_map_of_closed_embedding measurable_set_Ioc A,
427
+ preimage_add_const_Ioc, add_sub_cancel]
428
+ ... = ∫ x in a+d..b+d, f x : by rw [real.map_volume_add_right]
429
+
430
+ lemma integral_comp_mul_add (hc : c ≠ 0 ) (d : ℝ) :
431
+ ∫ x in a..b, f (c * x + d) = c⁻¹ • ∫ x in c*a+d..c*b+d, f x :=
432
+ by rw [← integral_comp_add_right f d, ← integral_comp_mul_left _ hc]
433
+
434
+ lemma integral_comp_add_mul (hc : c ≠ 0 ) (d : ℝ) :
435
+ ∫ x in a..b, f (d + c * x) = c⁻¹ • ∫ x in d+c*a..d+c*b, f x :=
436
+ by simpa only [add_comm] using integral_comp_mul_add f hc d
437
+
438
+ lemma integral_comp_div_add (hc : c ≠ 0 ) (d : ℝ) :
439
+ ∫ x in a..b, f (x / c + d) = c • ∫ x in a/c+d..b/c+d, f x :=
440
+ by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_add f (inv_ne_zero hc) d
441
+
442
+ lemma integral_comp_add_div (hc : c ≠ 0 ) (d : ℝ) :
443
+ ∫ x in a..b, f (d + x / c) = c • ∫ x in d+a/c..d+b/c, f x :=
444
+ by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_add_mul f (inv_ne_zero hc) d
445
+
446
+ lemma integral_comp_mul_sub (hc : c ≠ 0 ) (d : ℝ) :
447
+ ∫ x in a..b, f (c * x - d) = c⁻¹ • ∫ x in c*a-d..c*b-d, f x :=
448
+ by simpa only [sub_eq_add_neg] using integral_comp_mul_add f hc (-d)
449
+
450
+ lemma integral_comp_sub_mul (hc : c ≠ 0 ) (d : ℝ) :
451
+ ∫ x in a..b, f (d - c * x) = c⁻¹ • ∫ x in d-c*b..d-c*a, f x :=
399
452
begin
400
- have A : ae_measurable f (measure.map (λ (x : ℝ), -x) volume), by rwa real.map_volume_neg,
401
- conv_rhs { rw ← real.map_volume_neg },
402
- simp only [interval_integral, set_integral_map measurable_set_Ioc A measurable_neg, neg_preimage,
403
- preimage_neg_Ioc, neg_neg, restrict_congr_set Ico_ae_eq_Ioc]
453
+ simp only [sub_eq_add_neg, neg_mul_eq_neg_mul],
454
+ rw [integral_comp_add_mul f (neg_ne_zero.mpr hc) d, integral_symm],
455
+ simp only [inv_neg, smul_neg, neg_neg, neg_smul],
404
456
end
405
457
458
+ lemma integral_comp_div_sub (hc : c ≠ 0 ) (d : ℝ) :
459
+ ∫ x in a..b, f (x / c - d) = c • ∫ x in a/c-d..b/c-d, f x :=
460
+ by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_sub f (inv_ne_zero hc) d
461
+
462
+ lemma integral_comp_sub_div (hc : c ≠ 0 ) (d : ℝ) :
463
+ ∫ x in a..b, f (d - x / c) = c • ∫ x in d-b/c..d-a/c, f x :=
464
+ by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_sub_mul f (inv_ne_zero hc) d
465
+
466
+ lemma integral_comp_sub_right (d : ℝ) :
467
+ ∫ x in a..b, f (x - d) = ∫ x in a-d..b-d, f x :=
468
+ by simpa only [sub_eq_add_neg] using integral_comp_add_right f (-d)
469
+
470
+ lemma integral_comp_sub_left (d : ℝ) :
471
+ ∫ x in a..b, f (d - x) = ∫ x in d-b..d-a, f x :=
472
+ by simpa only [one_mul, one_smul, inv_one] using integral_comp_sub_mul f one_ne_zero d
473
+
474
+ end comp
475
+
406
476
/-!
407
477
### Integral is an additive function of the interval
408
478
@@ -411,14 +481,13 @@ as well as a few other identities trivially equivalent to this one. We also prov
411
481
`∫ x in a..b, f x ∂μ = ∫ x, f x ∂μ` provided that `support f ⊆ Ioc a b`.
412
482
-/
413
483
414
- variables [topological_space α] [opens_measurable_space α]
415
-
416
484
section order_closed_topology
417
485
418
- variables [order_closed_topology α]
486
+ variables [topological_space α] [order_closed_topology α] [opens_measurable_space α]
487
+ {a b c d : α} {f g : α → E} {μ : measure α}
419
488
420
489
/-- If two functions are equal in the relevant interval, their interval integrals are also equal. -/
421
- lemma integral_congr {a b : α} {f g : α → E} (h : eq_on f g (interval a b)) :
490
+ lemma integral_congr {a b : α} (h : eq_on f g (interval a b)) :
422
491
∫ x in a..b, f x ∂μ = ∫ x in a..b, g x ∂μ :=
423
492
by cases le_total a b with hab hab; simpa [hab, integral_of_le, integral_of_ge]
424
493
using set_integral_congr measurable_set_Ioc (h.mono Ioc_subset_Icc_self)
497
566
498
567
end order_closed_topology
499
568
500
- end
501
-
502
569
lemma integral_eq_zero_iff_of_le_of_nonneg_ae {f : ℝ → ℝ} {a b : ℝ} (hab : a ≤ b)
503
570
(hf : 0 ≤ᵐ[volume.restrict (Ioc a b)] f) (hfi : interval_integrable f volume a b) :
504
571
∫ x in a..b, f x = 0 ↔ f =ᵐ[volume.restrict (Ioc a b)] 0 :=
0 commit comments