Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 2ac1f20

Browse files
committed
rename open -> is_open, closed -> is_closed
1 parent 7882677 commit 2ac1f20

File tree

4 files changed

+347
-347
lines changed

4 files changed

+347
-347
lines changed

topology/continuity.lean

Lines changed: 67 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ set.ext $ assume ⟨a, b⟩, by simp
3636
section
3737
variables [topological_space α] [topological_space β] [topological_space γ]
3838

39-
def continuous (f : α → β) := ∀s, open' s → open' (preimage f s)
39+
def continuous (f : α → β) := ∀s, is_open s → is_open (preimage f s)
4040

4141
lemma continuous_id : continuous (id : α → α) :=
4242
assume s h, h
@@ -53,19 +53,19 @@ lemma continuous_iff_towards {f : α → β} :
5353
exact assume ⟨t, t_open, t_subset, fx_in_t⟩,
5454
⟨preimage f t, hf t t_open, fx_in_t, preimage_mono t_subset⟩,
5555
assume hf : ∀x, towards f (nhds x) (nhds (f x)),
56-
assume s, assume hs : open' s,
56+
assume s, assume hs : is_open s,
5757
have ∀a, f a ∈ s → s ∈ (nhds (f a)).sets,
5858
by simp [nhds_sets]; exact assume a ha, ⟨s, hs, subset.refl s, ha⟩,
59-
show open' (preimage f s),
60-
by simp [open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
59+
show is_open (preimage f s),
60+
by simp [is_open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
6161

6262
lemma continuous_const [topological_space α] [topological_space β] {b : β} : continuous (λa:α, b) :=
6363
continuous_iff_towards.mpr $ assume a, towards_const_nhds
6464

65-
lemma continuous_iff_closed {f : α → β} :
66-
continuous f ↔ (∀s, closed s → closed (preimage f s)) :=
65+
lemma continuous_iff_is_closed {f : α → β} :
66+
continuous f ↔ (∀s, is_closed s → is_closed (preimage f s)) :=
6767
⟨assume hf s hs, hf (-s) hs,
68-
assume hf s, by rw [←closed_compl_iff, ←closed_compl_iff]; exact hf _⟩
68+
assume hf s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩
6969

7070
lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) :
7171
f '' closure s ⊆ closure (f '' s) :=
@@ -82,7 +82,7 @@ by simp [image_subset_iff_subset_preimage, closure_eq_nhds]; assumption
8282

8383
lemma compact_image {s : set α} {f : α → β} (hs : compact s) (hf : continuous f) : compact (f '' s) :=
8484
compact_of_finite_subcover $ assume c hco hcs,
85-
have hdo : ∀t∈c, open' (preimage f t), from assume t' ht, hf _ $ hco _ ht,
85+
have hdo : ∀t∈c, is_open (preimage f t), from assume t' ht, hf _ $ hco _ ht,
8686
have hds : s ⊆ ⋃i∈c, preimage f i,
8787
by simp [subset_def]; simp [subset_def] at hcs; exact assume x hx, hcs _ (mem_image_of_mem f hx),
8888
let ⟨d', hcd', hfd', hd'⟩ := compact_elim_finite_subcover_image hs hdo hds in
@@ -107,11 +107,11 @@ lemma continuous_eq_le_coinduced {t₁ : tspace α} {t₂ : tspace β} :
107107
rfl
108108

109109
theorem continuous_generated_from {t : tspace α} {b : set (set β)}
110-
(h : ∀s∈b, open' (preimage f s)) : cont t (generate_from b) f :=
110+
(h : ∀s∈b, is_open (preimage f s)) : cont t (generate_from b) f :=
111111
assume s hs, generate_open.rec_on hs h
112-
open_univ
113-
(assume s t _ _, open_inter)
114-
(assume t _ h, by rw [preimage_sUnion]; exact (open_Union $ assume s, open_Union $ assume hs, h s hs))
112+
is_open_univ
113+
(assume s t _ _, is_open_inter)
114+
(assume t _ h, by rw [preimage_sUnion]; exact (is_open_Union $ assume s, is_open_Union $ assume hs, h s hs))
115115

116116
lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f :=
117117
assume s h, ⟨_, h, rfl⟩
@@ -234,31 +234,31 @@ lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : conti
234234
(by rwa [←continuous_iff_induced_le])⟩
235235

236236
lemma embedding_open {f : α → β} {s : set α}
237-
(hf : embedding f) (h : open' (f '' univ)) (hs : open' s) : open' (f '' s) :=
237+
(hf : embedding f) (h : is_open (f '' univ)) (hs : is_open s) : is_open (f '' s) :=
238238
let ⟨t, ht, h_eq⟩ := by rw [hf.right] at hs; exact hs in
239-
have open' (t ∩ f '' univ), from open_inter ht h,
239+
have is_open (t ∩ f '' univ), from is_open_inter ht h,
240240
h_eq.symm ▸ by rwa [image_preimage_eq_inter_rng]
241241

242-
lemma embedding_closed {f : α → β} {s : set α}
243-
(hf : embedding f) (h : closed (f '' univ)) (hs : closed s) : closed (f '' s) :=
244-
let ⟨t, ht, h_eq⟩ := by rw [hf.right, closed_induced_iff] at hs; exact hs in
245-
have closed (t ∩ f '' univ), from closed_inter ht h,
242+
lemma embedding_is_closed {f : α → β} {s : set α}
243+
(hf : embedding f) (h : is_closed (f '' univ)) (hs : is_closed s) : is_closed (f '' s) :=
244+
let ⟨t, ht, h_eq⟩ := by rw [hf.right, is_closed_induced_iff] at hs; exact hs in
245+
have is_closed (t ∩ f '' univ), from is_closed_inter ht h,
246246
h_eq.symm ▸ by rwa [image_preimage_eq_inter_rng]
247247

248248
end embedding
249249

250250
section sierpinski
251251
variables [topological_space α]
252252

253-
@[simp] lemma open_singleton_true : open' ({true} : set Prop) :=
253+
@[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) :=
254254
topological_space.generate_open.basic _ (by simp)
255255

256-
lemma continuous_Prop {p : α → Prop} : continuous p ↔ open' {x | p x} :=
256+
lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} :=
257257
⟨assume h : continuous p,
258-
have open' (preimage p {true}),
259-
from h _ open_singleton_true,
258+
have is_open (preimage p {true}),
259+
from h _ is_open_singleton_true,
260260
by simp [preimage, eq_true] at this; assumption,
261-
assume h : open' {x | p x},
261+
assume h : is_open {x | p x},
262262
continuous_generated_from $ assume s (hs : s ∈ {{true}}),
263263
by simp at hs; simp [hs, preimage, eq_true, h]⟩
264264

@@ -268,40 +268,40 @@ section induced
268268
open topological_space
269269
variables [t : topological_space β] {f : α → β}
270270

271-
theorem open_induced {s : set β} (h : open' s) : (induced f t).open' (preimage f s) :=
271+
theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (preimage f s) :=
272272
⟨s, h, rfl⟩
273273

274274
lemma nhds_induced_eq_vmap {a : α} : @nhds α (induced f t) a = vmap f (nhds (f a)) :=
275275
le_antisymm
276276
(assume s ⟨s', hs', (h_s : preimage f s' ⊆ s)⟩,
277-
have ∃t':set β, open' t' ∧ t' ⊆ s' ∧ f a ∈ t',
277+
have ∃t':set β, is_open t' ∧ t' ⊆ s' ∧ f a ∈ t',
278278
by simp [mem_nhds_sets_iff] at hs'; assumption,
279279
let ⟨t', ht', hsub, hin⟩ := this in
280280
(@nhds α (induced f t) a).upwards_sets
281281
begin
282282
simp [mem_nhds_sets_iff],
283-
exact ⟨preimage f t', open_induced ht', hin, preimage_mono hsub⟩
283+
exact ⟨preimage f t', is_open_induced ht', hin, preimage_mono hsub⟩
284284
end
285285
h_s)
286-
(le_infi $ assume s, le_infi $ assume ⟨as, ⟨s', open_s', s_eq⟩⟩,
286+
(le_infi $ assume s, le_infi $ assume ⟨as, ⟨s', is_open_s', s_eq⟩⟩,
287287
begin
288288
simp [vmap, mem_nhds_sets_iff, s_eq],
289-
exact ⟨s', subset.refl _, s', open_s', subset.refl _, by rw [s_eq] at as; assumption⟩
289+
exact ⟨s', subset.refl _, s', is_open_s', subset.refl _, by rw [s_eq] at as; assumption⟩
290290
end)
291291

292292
lemma map_nhds_induced_eq {a : α} (h : image f univ ∈ (nhds (f a)).sets) :
293293
map f (@nhds α (induced f t) a) = nhds (f a) :=
294294
le_antisymm
295295
((@continuous_iff_towards α β (induced f t) _ _).mp continuous_induced_dom a)
296296
(assume s, assume hs : preimage f s ∈ (@nhds α (induced f t) a).sets,
297-
let ⟨t', t_subset, open_t, a_in_t⟩ := mem_nhds_sets_iff.mp h in
298-
let ⟨s', s'_subset, ⟨s'', open_s'', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
297+
let ⟨t', t_subset, is_open_t, a_in_t⟩ := mem_nhds_sets_iff.mp h in
298+
let ⟨s', s'_subset, ⟨s'', is_open_s'', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
299299
by subst s'_eq; exact (mem_nhds_sets_iff.mpr $
300300
⟨t' ∩ s'',
301301
assume x ⟨h₁, h₂⟩, match x, h₂, t_subset h₁ with
302302
| x, h₂, ⟨y, _, y_eq⟩ := begin subst y_eq, exact s'_subset h₂ end
303303
end,
304-
open_inter open_t open_s'',
304+
is_open_inter is_open_t is_open_s'',
305305
⟨a_in_t, a_in_s'⟩⟩))
306306

307307
lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α}
@@ -340,22 +340,22 @@ lemma continuous_prod_mk {f : γ → α} {g : γ → β}
340340
(hf : continuous f) (hg : continuous g) : continuous (λx, prod.mk (f x) (g x)) :=
341341
continuous_sup_rng (continuous_induced_rng hf) (continuous_induced_rng hg)
342342

343-
lemma open_set_prod {s : set α} {t : set β} (hs : open' s) (ht: open' t) :
344-
open' (set.prod s t) :=
345-
open_inter (continuous_fst s hs) (continuous_snd t ht)
343+
lemma is_open_set_prod {s : set α} {t : set β} (hs : is_open s) (ht: is_open t) :
344+
is_open (set.prod s t) :=
345+
is_open_inter (continuous_fst s hs) (continuous_snd t ht)
346346

347347
lemma prod_eq_generate_from [tα : topological_space α] [tβ : topological_space β] :
348348
prod.topological_space =
349-
generate_from {g | ∃(s:set α) (t:set β), open' s ∧ open' t ∧ g = set.prod s t} :=
349+
generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = set.prod s t} :=
350350
le_antisymm
351351
(sup_le
352352
(assume s ⟨t, ht, s_eq⟩,
353353
have set.prod t univ = s, by simp [s_eq, preimage, set.prod],
354-
this ▸ (generate_open.basic _ ⟨t, univ, ht, open_univ, rfl⟩))
354+
this ▸ (generate_open.basic _ ⟨t, univ, ht, is_open_univ, rfl⟩))
355355
(assume s ⟨t, ht, s_eq⟩,
356356
have set.prod univ t = s, by simp [s_eq, preimage, set.prod],
357-
this ▸ (generate_open.basic _ ⟨univ, t, open_univ, ht, rfl⟩)))
358-
(generate_from_le $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ open_set_prod hs ht)
357+
this ▸ (generate_open.basic _ ⟨univ, t, is_open_univ, ht, rfl⟩)))
358+
(generate_from_le $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ is_open_set_prod hs ht)
359359

360360
lemma nhds_prod_eq {a : α} {b : β} : nhds (a, b) = filter.prod (nhds a) (nhds b) :=
361361
by rw [prod_eq_generate_from, nhds_generate_from];
@@ -386,12 +386,12 @@ have filter.prod (nhds a) (nhds b) ⊓ principal (set.prod s t) =
386386
by rw [←prod_inf_prod, prod_principal_principal],
387387
by simp [closure_eq_nhds, nhds_prod_eq, this]; exact prod_neq_bot
388388

389-
lemma closed_prod [topological_space α] [topological_space β] {s₁ : set α} {s₂ : set β}
390-
(h₁ : closed s₁) (h₂ : closed s₂) : closed (set.prod s₁ s₂) :=
391-
closure_eq_iff_closed.mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_closed]
389+
lemma is_closed_prod [topological_space α] [topological_space β] {s₁ : set α} {s₂ : set β}
390+
(h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (set.prod s₁ s₂) :=
391+
closure_eq_iff_is_closed.mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_is_closed]
392392

393-
lemma closed_diagonal [topological_space α] [t2_space α] : closed {p:α×α | p.1 = p.2} :=
394-
closed_iff_nhds.mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : nhds a₁ ⊓ nhds a₂ = ⊥, h $
393+
lemma is_closed_diagonal [topological_space α] [t2_space α] : is_closed {p:α×α | p.1 = p.2} :=
394+
is_closed_iff_nhds.mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : nhds a₁ ⊓ nhds a₂ = ⊥, h $
395395
let ⟨t₁, ht₁, t₂, ht₂, (h' : t₁ ∩ t₂ ⊆ ∅)⟩ :=
396396
by rw [←empty_in_sets_eq_bot, mem_inf_sets] at this; exact this in
397397
begin
@@ -402,9 +402,9 @@ closed_iff_nhds.mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : n
402402
show false, from @h' x₁ ⟨hx₁, heq.symm ▸ hx₂⟩
403403
end
404404

405-
lemma closed_eq [topological_space α] [t2_space α] [topological_space β] {f g : β → α}
406-
(hf : continuous f) (hg : continuous g) : closed {x:β | f x = g x} :=
407-
continuous_iff_closed.mp (continuous_prod_mk hf hg) _ closed_diagonal
405+
lemma is_closed_eq [topological_space α] [t2_space α] [topological_space β] {f g : β → α}
406+
(hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
407+
continuous_iff_is_closed.mp (continuous_prod_mk hf hg) _ is_closed_diagonal
408408

409409
end prod
410410

@@ -467,21 +467,21 @@ continuous_iff_towards.mpr $ assume x,
467467
... = map (λx:subtype (c i), f x.val) (nhds x') : rfl
468468
... ≤ nhds (f x) : continuous_iff_towards.mp (f_cont i) x'
469469

470-
lemma continuous_subtype_closed_cover {f : α → β} (c : γ → α → Prop)
470+
lemma continuous_subtype_is_closed_cover {f : α → β} (c : γ → α → Prop)
471471
(h_lf : locally_finite (λi, {x | c i x}))
472-
(h_closed : ∀i, closed {x | c i x})
472+
(h_is_closed : ∀i, is_closed {x | c i x})
473473
(h_cover : ∀x, ∃i, c i x)
474474
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
475475
continuous f :=
476-
continuous_iff_closed.mpr $
476+
continuous_iff_is_closed.mpr $
477477
assume s hs,
478-
have ∀i, closed (@subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
478+
have ∀i, is_closed (@subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
479479
from assume i,
480-
embedding_closed embedding_subtype_val
481-
(by simp [subtype.val_image]; exact h_closed i)
482-
(continuous_iff_closed.mp (f_cont i) _ hs),
483-
have closed (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
484-
from closed_Union_of_locally_finite
480+
embedding_is_closed embedding_subtype_val
481+
(by simp [subtype.val_image]; exact h_is_closed i)
482+
(continuous_iff_is_closed.mp (f_cont i) _ hs),
483+
have is_closed (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
484+
from is_closed_Union_of_locally_finite
485485
(locally_finite_subset h_lf $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx')
486486
this,
487487
have preimage f s = (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
@@ -582,11 +582,11 @@ have hφ : φ ∈ (nhds b).sets,
582582
from (nhds b).upwards_sets hf $ assume b ⟨c, hc⟩,
583583
show towards f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
584584
assume s hs,
585-
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_closed hs in
585+
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
586586
let ⟨s', hs'₁, (hs'₂ : preimage e s' ⊆ preimage f s'')⟩ := mem_of_nhds hφ hs''₁ in
587587
let ⟨t, (ht₁ : t ⊆ φ ∩ s'), ht₂, ht₃⟩ := mem_nhds_sets_iff.mp $ inter_mem_sets hφ hs'₁ in
588588
have h₁ : closure (f '' preimage e s') ⊆ s'',
589-
by rw [closure_subset_iff_subset_of_closed hs''₃, image_subset_iff_subset_preimage]; exact hs'₂,
589+
by rw [closure_subset_iff_subset_of_is_closed hs''₃, image_subset_iff_subset_preimage]; exact hs'₂,
590590
have h₂ : t ⊆ preimage (de.ext f) (closure (f '' preimage e t)), from
591591
assume b' hb',
592592
have nhds b' ≤ principal t, by simp; exact mem_nhds_sets ht₂ hb',
@@ -655,27 +655,27 @@ protected def subtype (p : α → Prop) {e : α → β} (de : dense_embedding e)
655655
end dense_embedding
656656

657657

658-
lemma closed_property [topological_space α] [topological_space β] {e : α → β} {p : β → Prop}
659-
(he : closure (e '' univ) = univ) (hp : closed {x | p x}) (h : ∀a, p (e a)) :
658+
lemma is_closed_property [topological_space α] [topological_space β] {e : α → β} {p : β → Prop}
659+
(he : closure (e '' univ) = univ) (hp : is_closed {x | p x}) (h : ∀a, p (e a)) :
660660
∀b, p b :=
661661
have univ ⊆ {b | p b},
662662
from calc univ = closure (e '' univ) : he.symm
663663
... ⊆ closure {b | p b} : closure_mono $ image_subset_iff_subset_preimage.mpr $ assume a _, h a
664-
... = _ : closure_eq_of_closed hp,
664+
... = _ : closure_eq_of_is_closed hp,
665665
assume b, this trivial
666666

667-
lemma closed_property2 [topological_space α] [topological_space β] {e : α → β} {p : β → β → Prop}
668-
(he : dense_embedding e) (hp : closed {q:β×β | p q.1 q.2}) (h : ∀a₁ a₂, p (e a₁) (e a₂)) :
667+
lemma is_closed_property2 [topological_space α] [topological_space β] {e : α → β} {p : β → β → Prop}
668+
(he : dense_embedding e) (hp : is_closed {q:β×β | p q.1 q.2}) (h : ∀a₁ a₂, p (e a₁) (e a₂)) :
669669
∀b₁ b₂, p b₁ b₂ :=
670670
have ∀q:β×β, p q.1 q.2,
671-
from closed_property ((he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂⟩, h _ _,
671+
from is_closed_property ((he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂⟩, h _ _,
672672
assume b₁ b₂, this ⟨b₁, b₂⟩
673673

674-
lemma closed_property3 [topological_space α] [topological_space β] {e : α → β} {p : β → β → β → Prop}
675-
(he : dense_embedding e) (hp : closed {q:β×β×β | p q.1 q.2.1 q.2.2}) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) :
674+
lemma is_closed_property3 [topological_space α] [topological_space β] {e : α → β} {p : β → β → β → Prop}
675+
(he : dense_embedding e) (hp : is_closed {q:β×β×β | p q.1 q.2.1 q.2.2}) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) :
676676
∀b₁ b₂ b₃, p b₁ b₂ b₃ :=
677677
have ∀q:β×β×β, p q.1 q.2.1 q.2.2,
678-
from closed_property ((he.prod $ he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂, a₃⟩, h _ _ _,
678+
from is_closed_property ((he.prod $ he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂, a₃⟩, h _ _ _,
679679
assume b₁ b₂ b₃, this ⟨b₁, b₂, b₃⟩
680680

681681
lemma mem_closure_of_continuous [topological_space α] [topological_space β]
@@ -685,7 +685,7 @@ lemma mem_closure_of_continuous [topological_space α] [topological_space β]
685685
calc f a ∈ f '' closure s : mem_image_of_mem _ ha
686686
... ⊆ closure (f '' s) : image_closure_subset_closure_image hf
687687
... ⊆ closure (closure t) : closure_mono $ image_subset_iff_subset_preimage.mpr $ h
688-
... ⊆ closure t : begin rw [closure_eq_of_closed], exact subset.refl _, exact closed_closure end
688+
... ⊆ closure t : begin rw [closure_eq_of_is_closed], exact subset.refl _, exact is_closed_closure end
689689

690690
lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ]
691691
{f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ}

0 commit comments

Comments
 (0)