@@ -36,7 +36,7 @@ set.ext $ assume ⟨a, b⟩, by simp
36
36
section
37
37
variables [topological_space α] [topological_space β] [topological_space γ]
38
38
39
- def continuous (f : α → β) := ∀s, open ' s → open ' (preimage f s)
39
+ def continuous (f : α → β) := ∀s, is_open s → is_open (preimage f s)
40
40
41
41
lemma continuous_id : continuous (id : α → α) :=
42
42
assume s h, h
@@ -53,19 +53,19 @@ lemma continuous_iff_towards {f : α → β} :
53
53
exact assume ⟨t, t_open, t_subset, fx_in_t⟩,
54
54
⟨preimage f t, hf t t_open, fx_in_t, preimage_mono t_subset⟩,
55
55
assume hf : ∀x, towards f (nhds x) (nhds (f x)),
56
- assume s, assume hs : open ' s,
56
+ assume s, assume hs : is_open s,
57
57
have ∀a, f a ∈ s → s ∈ (nhds (f a)).sets,
58
58
by simp [nhds_sets]; exact assume a ha, ⟨s, hs, subset.refl s, ha⟩,
59
- show open ' (preimage f s),
60
- by simp [open_iff_nhds ]; exact assume a ha, hf a (this a ha)⟩
59
+ show is_open (preimage f s),
60
+ by simp [is_open_iff_nhds ]; exact assume a ha, hf a (this a ha)⟩
61
61
62
62
lemma continuous_const [topological_space α] [topological_space β] {b : β} : continuous (λa:α, b) :=
63
63
continuous_iff_towards.mpr $ assume a, towards_const_nhds
64
64
65
- lemma continuous_iff_closed {f : α → β} :
66
- continuous f ↔ (∀s, closed s → closed (preimage f s)) :=
65
+ lemma continuous_iff_is_closed {f : α → β} :
66
+ continuous f ↔ (∀s, is_closed s → is_closed (preimage f s)) :=
67
67
⟨assume hf s hs, hf (-s) hs,
68
- assume hf s, by rw [←closed_compl_iff , ←closed_compl_iff ]; exact hf _⟩
68
+ assume hf s, by rw [←is_closed_compl_iff , ←is_closed_compl_iff ]; exact hf _⟩
69
69
70
70
lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) :
71
71
f '' closure s ⊆ closure (f '' s) :=
@@ -82,7 +82,7 @@ by simp [image_subset_iff_subset_preimage, closure_eq_nhds]; assumption
82
82
83
83
lemma compact_image {s : set α} {f : α → β} (hs : compact s) (hf : continuous f) : compact (f '' s) :=
84
84
compact_of_finite_subcover $ assume c hco hcs,
85
- have hdo : ∀t∈c, open ' (preimage f t), from assume t' ht, hf _ $ hco _ ht,
85
+ have hdo : ∀t∈c, is_open (preimage f t), from assume t' ht, hf _ $ hco _ ht,
86
86
have hds : s ⊆ ⋃i∈c, preimage f i,
87
87
by simp [subset_def]; simp [subset_def] at hcs; exact assume x hx, hcs _ (mem_image_of_mem f hx),
88
88
let ⟨d', hcd', hfd', hd'⟩ := compact_elim_finite_subcover_image hs hdo hds in
@@ -107,11 +107,11 @@ lemma continuous_eq_le_coinduced {t₁ : tspace α} {t₂ : tspace β} :
107
107
rfl
108
108
109
109
theorem continuous_generated_from {t : tspace α} {b : set (set β)}
110
- (h : ∀s∈b, open' (preimage f s)) : cont t (generate_from b) f :=
110
+ (h : ∀s∈b, is_open (preimage f s)) : cont t (generate_from b) f :=
111
111
assume s hs, generate_open.rec_on hs h
112
- open_univ
113
- (assume s t _ _, open_inter )
114
- (assume t _ h, by rw [preimage_sUnion]; exact (open_Union $ assume s, open_Union $ assume hs, h s hs))
112
+ is_open_univ
113
+ (assume s t _ _, is_open_inter )
114
+ (assume t _ h, by rw [preimage_sUnion]; exact (is_open_Union $ assume s, is_open_Union $ assume hs, h s hs))
115
115
116
116
lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f :=
117
117
assume s h, ⟨_, h, rfl⟩
@@ -234,31 +234,31 @@ lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : conti
234
234
(by rwa [←continuous_iff_induced_le])⟩
235
235
236
236
lemma embedding_open {f : α → β} {s : set α}
237
- (hf : embedding f) (h : open' (f '' univ)) (hs : open' s) : open ' (f '' s) :=
237
+ (hf : embedding f) (h : is_open (f '' univ)) (hs : is_open s) : is_open (f '' s) :=
238
238
let ⟨t, ht, h_eq⟩ := by rw [hf.right] at hs; exact hs in
239
- have open ' (t ∩ f '' univ), from open_inter ht h,
239
+ have is_open (t ∩ f '' univ), from is_open_inter ht h,
240
240
h_eq.symm ▸ by rwa [image_preimage_eq_inter_rng]
241
241
242
- lemma embedding_closed {f : α → β} {s : set α}
243
- (hf : embedding f) (h : closed (f '' univ)) (hs : closed s) : closed (f '' s) :=
244
- let ⟨t, ht, h_eq⟩ := by rw [hf.right, closed_induced_iff ] at hs; exact hs in
245
- have closed (t ∩ f '' univ), from closed_inter ht h,
242
+ lemma embedding_is_closed {f : α → β} {s : set α}
243
+ (hf : embedding f) (h : is_closed (f '' univ)) (hs : is_closed s) : is_closed (f '' s) :=
244
+ let ⟨t, ht, h_eq⟩ := by rw [hf.right, is_closed_induced_iff ] at hs; exact hs in
245
+ have is_closed (t ∩ f '' univ), from is_closed_inter ht h,
246
246
h_eq.symm ▸ by rwa [image_preimage_eq_inter_rng]
247
247
248
248
end embedding
249
249
250
250
section sierpinski
251
251
variables [topological_space α]
252
252
253
- @[simp] lemma open_singleton_true : open ' ({true} : set Prop ) :=
253
+ @[simp] lemma is_open_singleton_true : is_open ({true} : set Prop ) :=
254
254
topological_space.generate_open.basic _ (by simp)
255
255
256
- lemma continuous_Prop {p : α → Prop } : continuous p ↔ open ' {x | p x} :=
256
+ lemma continuous_Prop {p : α → Prop } : continuous p ↔ is_open {x | p x} :=
257
257
⟨assume h : continuous p,
258
- have open ' (preimage p {true}),
259
- from h _ open_singleton_true ,
258
+ have is_open (preimage p {true}),
259
+ from h _ is_open_singleton_true ,
260
260
by simp [preimage, eq_true] at this ; assumption,
261
- assume h : open ' {x | p x},
261
+ assume h : is_open {x | p x},
262
262
continuous_generated_from $ assume s (hs : s ∈ {{true}}),
263
263
by simp at hs; simp [hs, preimage, eq_true, h]⟩
264
264
@@ -268,40 +268,40 @@ section induced
268
268
open topological_space
269
269
variables [t : topological_space β] {f : α → β}
270
270
271
- theorem open_induced {s : set β} (h : open' s) : (induced f t).open' (preimage f s) :=
271
+ theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (preimage f s) :=
272
272
⟨s, h, rfl⟩
273
273
274
274
lemma nhds_induced_eq_vmap {a : α} : @nhds α (induced f t) a = vmap f (nhds (f a)) :=
275
275
le_antisymm
276
276
(assume s ⟨s', hs', (h_s : preimage f s' ⊆ s)⟩,
277
- have ∃t':set β, open' t' ∧ t' ⊆ s' ∧ f a ∈ t',
277
+ have ∃t':set β, is_open t' ∧ t' ⊆ s' ∧ f a ∈ t',
278
278
by simp [mem_nhds_sets_iff] at hs'; assumption,
279
279
let ⟨t', ht', hsub, hin⟩ := this in
280
280
(@nhds α (induced f t) a).upwards_sets
281
281
begin
282
282
simp [mem_nhds_sets_iff],
283
- exact ⟨preimage f t', open_induced ht', hin, preimage_mono hsub⟩
283
+ exact ⟨preimage f t', is_open_induced ht', hin, preimage_mono hsub⟩
284
284
end
285
285
h_s)
286
- (le_infi $ assume s, le_infi $ assume ⟨as, ⟨s', open_s ', s_eq⟩⟩,
286
+ (le_infi $ assume s, le_infi $ assume ⟨as, ⟨s', is_open_s ', s_eq⟩⟩,
287
287
begin
288
288
simp [vmap, mem_nhds_sets_iff, s_eq],
289
- exact ⟨s', subset.refl _, s', open_s ', subset.refl _, by rw [s_eq] at as; assumption⟩
289
+ exact ⟨s', subset.refl _, s', is_open_s ', subset.refl _, by rw [s_eq] at as; assumption⟩
290
290
end )
291
291
292
292
lemma map_nhds_induced_eq {a : α} (h : image f univ ∈ (nhds (f a)).sets) :
293
293
map f (@nhds α (induced f t) a) = nhds (f a) :=
294
294
le_antisymm
295
295
((@continuous_iff_towards α β (induced f t) _ _).mp continuous_induced_dom a)
296
296
(assume s, assume hs : preimage f s ∈ (@nhds α (induced f t) a).sets,
297
- let ⟨t', t_subset, open_t , a_in_t⟩ := mem_nhds_sets_iff.mp h in
298
- let ⟨s', s'_subset, ⟨s'', open_s '', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
297
+ let ⟨t', t_subset, is_open_t , a_in_t⟩ := mem_nhds_sets_iff.mp h in
298
+ let ⟨s', s'_subset, ⟨s'', is_open_s '', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
299
299
by subst s'_eq; exact (mem_nhds_sets_iff.mpr $
300
300
⟨t' ∩ s'',
301
301
assume x ⟨h₁, h₂⟩, match x, h₂, t_subset h₁ with
302
302
| x, h₂, ⟨y, _, y_eq⟩ := begin subst y_eq, exact s'_subset h₂ end
303
303
end ,
304
- open_inter open_t open_s '',
304
+ is_open_inter is_open_t is_open_s '',
305
305
⟨a_in_t, a_in_s'⟩⟩))
306
306
307
307
lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α}
@@ -340,22 +340,22 @@ lemma continuous_prod_mk {f : γ → α} {g : γ → β}
340
340
(hf : continuous f) (hg : continuous g) : continuous (λx, prod.mk (f x) (g x)) :=
341
341
continuous_sup_rng (continuous_induced_rng hf) (continuous_induced_rng hg)
342
342
343
- lemma open_set_prod {s : set α} {t : set β} (hs : open' s) (ht: open' t) :
344
- open ' (set.prod s t) :=
345
- open_inter (continuous_fst s hs) (continuous_snd t ht)
343
+ lemma is_open_set_prod {s : set α} {t : set β} (hs : is_open s) (ht: is_open t) :
344
+ is_open (set.prod s t) :=
345
+ is_open_inter (continuous_fst s hs) (continuous_snd t ht)
346
346
347
347
lemma prod_eq_generate_from [tα : topological_space α] [tβ : topological_space β] :
348
348
prod.topological_space =
349
- generate_from {g | ∃(s:set α) (t:set β), open ' s ∧ open ' t ∧ g = set.prod s t} :=
349
+ generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = set.prod s t} :=
350
350
le_antisymm
351
351
(sup_le
352
352
(assume s ⟨t, ht, s_eq⟩,
353
353
have set.prod t univ = s, by simp [s_eq, preimage, set.prod],
354
- this ▸ (generate_open.basic _ ⟨t, univ, ht, open_univ , rfl⟩))
354
+ this ▸ (generate_open.basic _ ⟨t, univ, ht, is_open_univ , rfl⟩))
355
355
(assume s ⟨t, ht, s_eq⟩,
356
356
have set.prod univ t = s, by simp [s_eq, preimage, set.prod],
357
- this ▸ (generate_open.basic _ ⟨univ, t, open_univ , ht, rfl⟩)))
358
- (generate_from_le $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ open_set_prod hs ht)
357
+ this ▸ (generate_open.basic _ ⟨univ, t, is_open_univ , ht, rfl⟩)))
358
+ (generate_from_le $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ is_open_set_prod hs ht)
359
359
360
360
lemma nhds_prod_eq {a : α} {b : β} : nhds (a, b) = filter.prod (nhds a) (nhds b) :=
361
361
by rw [prod_eq_generate_from, nhds_generate_from];
@@ -386,12 +386,12 @@ have filter.prod (nhds a) (nhds b) ⊓ principal (set.prod s t) =
386
386
by rw [←prod_inf_prod, prod_principal_principal],
387
387
by simp [closure_eq_nhds, nhds_prod_eq, this ]; exact prod_neq_bot
388
388
389
- lemma closed_prod [topological_space α] [topological_space β] {s₁ : set α} {s₂ : set β}
390
- (h₁ : closed s₁) (h₂ : closed s₂) : closed (set.prod s₁ s₂) :=
391
- closure_eq_iff_closed .mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_closed ]
389
+ lemma is_closed_prod [topological_space α] [topological_space β] {s₁ : set α} {s₂ : set β}
390
+ (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (set.prod s₁ s₂) :=
391
+ closure_eq_iff_is_closed .mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_is_closed ]
392
392
393
- lemma closed_diagonal [topological_space α] [t2_space α] : closed {p:α×α | p.1 = p.2 } :=
394
- closed_iff_nhds .mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : nhds a₁ ⊓ nhds a₂ = ⊥, h $
393
+ lemma is_closed_diagonal [topological_space α] [t2_space α] : is_closed {p:α×α | p.1 = p.2 } :=
394
+ is_closed_iff_nhds .mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : nhds a₁ ⊓ nhds a₂ = ⊥, h $
395
395
let ⟨t₁, ht₁, t₂, ht₂, (h' : t₁ ∩ t₂ ⊆ ∅)⟩ :=
396
396
by rw [←empty_in_sets_eq_bot, mem_inf_sets] at this ; exact this in
397
397
begin
@@ -402,9 +402,9 @@ closed_iff_nhds.mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : n
402
402
show false, from @h' x₁ ⟨hx₁, heq.symm ▸ hx₂⟩
403
403
end
404
404
405
- lemma closed_eq [topological_space α] [t2_space α] [topological_space β] {f g : β → α}
406
- (hf : continuous f) (hg : continuous g) : closed {x:β | f x = g x} :=
407
- continuous_iff_closed .mp (continuous_prod_mk hf hg) _ closed_diagonal
405
+ lemma is_closed_eq [topological_space α] [t2_space α] [topological_space β] {f g : β → α}
406
+ (hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
407
+ continuous_iff_is_closed .mp (continuous_prod_mk hf hg) _ is_closed_diagonal
408
408
409
409
end prod
410
410
@@ -467,21 +467,21 @@ continuous_iff_towards.mpr $ assume x,
467
467
... = map (λx:subtype (c i), f x.val) (nhds x') : rfl
468
468
... ≤ nhds (f x) : continuous_iff_towards.mp (f_cont i) x'
469
469
470
- lemma continuous_subtype_closed_cover {f : α → β} (c : γ → α → Prop )
470
+ lemma continuous_subtype_is_closed_cover {f : α → β} (c : γ → α → Prop )
471
471
(h_lf : locally_finite (λi, {x | c i x}))
472
- (h_closed : ∀i, closed {x | c i x})
472
+ (h_is_closed : ∀i, is_closed {x | c i x})
473
473
(h_cover : ∀x, ∃i, c i x)
474
474
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
475
475
continuous f :=
476
- continuous_iff_closed .mpr $
476
+ continuous_iff_is_closed .mpr $
477
477
assume s hs,
478
- have ∀i, closed (@subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
478
+ have ∀i, is_closed (@subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
479
479
from assume i,
480
- embedding_closed embedding_subtype_val
481
- (by simp [subtype.val_image]; exact h_closed i)
482
- (continuous_iff_closed .mp (f_cont i) _ hs),
483
- have closed (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
484
- from closed_Union_of_locally_finite
480
+ embedding_is_closed embedding_subtype_val
481
+ (by simp [subtype.val_image]; exact h_is_closed i)
482
+ (continuous_iff_is_closed .mp (f_cont i) _ hs),
483
+ have is_closed (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
484
+ from is_closed_Union_of_locally_finite
485
485
(locally_finite_subset h_lf $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx')
486
486
this ,
487
487
have preimage f s = (⋃i, @subtype.val α {x | c i x} '' (preimage (f ∘ subtype.val) s)),
@@ -582,11 +582,11 @@ have hφ : φ ∈ (nhds b).sets,
582
582
from (nhds b).upwards_sets hf $ assume b ⟨c, hc⟩,
583
583
show towards f (vmap e (nhds b)) (nhds (de.ext f b)), from (de.ext_eq hc).symm ▸ hc,
584
584
assume s hs,
585
- let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_closed hs in
585
+ let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
586
586
let ⟨s', hs'₁, (hs'₂ : preimage e s' ⊆ preimage f s'')⟩ := mem_of_nhds hφ hs''₁ in
587
587
let ⟨t, (ht₁ : t ⊆ φ ∩ s'), ht₂, ht₃⟩ := mem_nhds_sets_iff.mp $ inter_mem_sets hφ hs'₁ in
588
588
have h₁ : closure (f '' preimage e s') ⊆ s'',
589
- by rw [closure_subset_iff_subset_of_closed hs''₃, image_subset_iff_subset_preimage]; exact hs'₂,
589
+ by rw [closure_subset_iff_subset_of_is_closed hs''₃, image_subset_iff_subset_preimage]; exact hs'₂,
590
590
have h₂ : t ⊆ preimage (de.ext f) (closure (f '' preimage e t)), from
591
591
assume b' hb',
592
592
have nhds b' ≤ principal t, by simp; exact mem_nhds_sets ht₂ hb',
@@ -655,27 +655,27 @@ protected def subtype (p : α → Prop) {e : α → β} (de : dense_embedding e)
655
655
end dense_embedding
656
656
657
657
658
- lemma closed_property [topological_space α] [topological_space β] {e : α → β} {p : β → Prop }
659
- (he : closure (e '' univ) = univ) (hp : closed {x | p x}) (h : ∀a, p (e a)) :
658
+ lemma is_closed_property [topological_space α] [topological_space β] {e : α → β} {p : β → Prop }
659
+ (he : closure (e '' univ) = univ) (hp : is_closed {x | p x}) (h : ∀a, p (e a)) :
660
660
∀b, p b :=
661
661
have univ ⊆ {b | p b},
662
662
from calc univ = closure (e '' univ) : he.symm
663
663
... ⊆ closure {b | p b} : closure_mono $ image_subset_iff_subset_preimage.mpr $ assume a _, h a
664
- ... = _ : closure_eq_of_closed hp,
664
+ ... = _ : closure_eq_of_is_closed hp,
665
665
assume b, this trivial
666
666
667
- lemma closed_property2 [topological_space α] [topological_space β] {e : α → β} {p : β → β → Prop }
668
- (he : dense_embedding e) (hp : closed {q:β×β | p q.1 q.2 }) (h : ∀a₁ a₂, p (e a₁) (e a₂)) :
667
+ lemma is_closed_property2 [topological_space α] [topological_space β] {e : α → β} {p : β → β → Prop }
668
+ (he : dense_embedding e) (hp : is_closed {q:β×β | p q.1 q.2 }) (h : ∀a₁ a₂, p (e a₁) (e a₂)) :
669
669
∀b₁ b₂, p b₁ b₂ :=
670
670
have ∀q:β×β, p q.1 q.2 ,
671
- from closed_property ((he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂⟩, h _ _,
671
+ from is_closed_property ((he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂⟩, h _ _,
672
672
assume b₁ b₂, this ⟨b₁, b₂⟩
673
673
674
- lemma closed_property3 [topological_space α] [topological_space β] {e : α → β} {p : β → β → β → Prop }
675
- (he : dense_embedding e) (hp : closed {q:β×β×β | p q.1 q.2 .1 q.2 .2 }) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) :
674
+ lemma is_closed_property3 [topological_space α] [topological_space β] {e : α → β} {p : β → β → β → Prop }
675
+ (he : dense_embedding e) (hp : is_closed {q:β×β×β | p q.1 q.2 .1 q.2 .2 }) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) :
676
676
∀b₁ b₂ b₃, p b₁ b₂ b₃ :=
677
677
have ∀q:β×β×β, p q.1 q.2 .1 q.2 .2 ,
678
- from closed_property ((he.prod $ he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂, a₃⟩, h _ _ _,
678
+ from is_closed_property ((he.prod $ he.prod he).closure_image_univ) hp $ assume ⟨a₁, a₂, a₃⟩, h _ _ _,
679
679
assume b₁ b₂ b₃, this ⟨b₁, b₂, b₃⟩
680
680
681
681
lemma mem_closure_of_continuous [topological_space α] [topological_space β]
@@ -685,7 +685,7 @@ lemma mem_closure_of_continuous [topological_space α] [topological_space β]
685
685
calc f a ∈ f '' closure s : mem_image_of_mem _ ha
686
686
... ⊆ closure (f '' s) : image_closure_subset_closure_image hf
687
687
... ⊆ closure (closure t) : closure_mono $ image_subset_iff_subset_preimage.mpr $ h
688
- ... ⊆ closure t : begin rw [closure_eq_of_closed ], exact subset.refl _, exact closed_closure end
688
+ ... ⊆ closure t : begin rw [closure_eq_of_is_closed ], exact subset.refl _, exact is_closed_closure end
689
689
690
690
lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ]
691
691
{f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ}
0 commit comments