@@ -3,7 +3,6 @@ Copyright (c) Sébastien Gouëzel. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Sébastien Gouëzel
5
5
-/
6
- import analysis.normed_space.finite_dimension
7
6
import data.complex.module
8
7
import data.complex.is_R_or_C
9
8
@@ -80,7 +79,8 @@ instance normed_space.restrict_scalars_real (E : Type*) [normed_group E] [normed
80
79
open continuous_linear_map
81
80
82
81
/-- Continuous linear map version of the real part function, from `ℂ` to `ℝ`. -/
83
- def continuous_linear_map.re : ℂ →L[ℝ] ℝ := linear_map.re.to_continuous_linear_map
82
+ def continuous_linear_map.re : ℂ →L[ℝ] ℝ :=
83
+ linear_map.re.mk_continuous 1 (λ x, by simp [real.norm_eq_abs, abs_re_le_abs])
84
84
85
85
@[continuity] lemma continuous_re : continuous re := continuous_linear_map.re.continuous
86
86
@@ -92,12 +92,13 @@ def continuous_linear_map.re : ℂ →L[ℝ] ℝ := linear_map.re.to_continuous_
92
92
93
93
@[simp] lemma continuous_linear_map.re_norm :
94
94
∥continuous_linear_map.re∥ = 1 :=
95
- le_antisymm (op_norm_le_bound _ zero_le_one $ λ z, by simp [real.norm_eq_abs, abs_re_le_abs] ) $
95
+ le_antisymm (linear_map.mk_continuous_norm_le _ zero_le_one _ ) $
96
96
calc 1 = ∥continuous_linear_map.re 1 ∥ : by simp
97
97
... ≤ ∥continuous_linear_map.re∥ : unit_le_op_norm _ _ (by simp)
98
98
99
99
/-- Continuous linear map version of the real part function, from `ℂ` to `ℝ`. -/
100
- def continuous_linear_map.im : ℂ →L[ℝ] ℝ := linear_map.im.to_continuous_linear_map
100
+ def continuous_linear_map.im : ℂ →L[ℝ] ℝ :=
101
+ linear_map.im.mk_continuous 1 (λ x, by simp [real.norm_eq_abs, abs_im_le_abs])
101
102
102
103
@[continuity] lemma continuous_im : continuous im := continuous_linear_map.im.continuous
103
104
@@ -109,10 +110,30 @@ def continuous_linear_map.im : ℂ →L[ℝ] ℝ := linear_map.im.to_continuous_
109
110
110
111
@[simp] lemma continuous_linear_map.im_norm :
111
112
∥continuous_linear_map.im∥ = 1 :=
112
- le_antisymm (op_norm_le_bound _ zero_le_one $ λ z, by simp [real.norm_eq_abs, abs_im_le_abs] ) $
113
+ le_antisymm (linear_map.mk_continuous_norm_le _ zero_le_one _ ) $
113
114
calc 1 = ∥continuous_linear_map.im I∥ : by simp
114
115
... ≤ ∥continuous_linear_map.im∥ : unit_le_op_norm _ _ (by simp)
115
116
117
+ /-- The complex-conjugation function from `ℂ` to itself is an isometric linear map. -/
118
+ def linear_isometry.conj : ℂ →ₗᵢ[ℝ] ℂ := ⟨linear_map.conj, λ x, by simp⟩
119
+
120
+ /-- Continuous linear map version of the conj function, from `ℂ` to `ℂ`. -/
121
+ def continuous_linear_map.conj : ℂ →L[ℝ] ℂ := linear_isometry.conj.to_continuous_linear_map
122
+
123
+ lemma isometry_conj : isometry (conj : ℂ → ℂ) := linear_isometry.conj.isometry
124
+
125
+ @[continuity] lemma continuous_conj : continuous conj := continuous_linear_map.conj.continuous
126
+
127
+ @[simp] lemma continuous_linear_map.conj_coe :
128
+ (coe (continuous_linear_map.conj) : ℂ →ₗ[ℝ] ℂ) = linear_map.conj := rfl
129
+
130
+ @[simp] lemma continuous_linear_map.conj_apply (z : ℂ) :
131
+ (continuous_linear_map.conj : ℂ → ℂ) z = z.conj := rfl
132
+
133
+ @[simp] lemma continuous_linear_map.conj_norm :
134
+ ∥continuous_linear_map.conj∥ = 1 :=
135
+ linear_isometry.conj.norm_to_continuous_linear_map
136
+
116
137
/-- Linear isometry version of the canonical embedding of `ℝ` in `ℂ`. -/
117
138
def linear_isometry.of_real : ℝ →ₗᵢ[ℝ] ℂ := ⟨linear_map.of_real, λ x, by simp⟩
118
139
0 commit comments