@@ -169,24 +169,24 @@ calc f a = ∏ i in {a}, f i : prod_singleton.symm
169
169
... ≤ ∏ i in s, f i :
170
170
prod_le_prod_of_subset_of_one_le' (singleton_subset_iff.2 h) $ λ i hi _, hf i hi
171
171
172
- @[to_additive]
173
- lemma prod_le_of_forall_le (s : finset ι) (f : ι → N) (n : N) (h : ∀ x ∈ s, f x ≤ n) :
172
+ @[to_additive sum_le_card_nsmul ]
173
+ lemma prod_le_pow_card (s : finset ι) (f : ι → N) (n : N) (h : ∀ x ∈ s, f x ≤ n) :
174
174
s.prod f ≤ n ^ s.card :=
175
175
begin
176
- refine (multiset.prod_le_of_forall_le (s.val.map f) n _).trans _,
176
+ refine (multiset.prod_le_pow_card (s.val.map f) n _).trans _,
177
177
{ simpa using h },
178
178
{ simpa }
179
179
end
180
180
181
- @[to_additive]
182
- lemma le_prod_of_forall_le (s : finset ι) (f : ι → N) (n : N) (h : ∀ x ∈ s, n ≤ f x) :
181
+ @[to_additive card_nsmul_le_sum ]
182
+ lemma pow_card_le_prod (s : finset ι) (f : ι → N) (n : N) (h : ∀ x ∈ s, n ≤ f x) :
183
183
n ^ s.card ≤ s.prod f :=
184
- @finset.prod_le_of_forall_le _ (order_dual N) _ _ _ _ h
184
+ @finset.prod_le_pow_card _ (order_dual N) _ _ _ _ h
185
185
186
186
lemma card_bUnion_le_card_mul [decidable_eq β] (s : finset ι) (f : ι → finset β) (n : ℕ)
187
187
(h : ∀ a ∈ s, (f a).card ≤ n) :
188
188
(s.bUnion f).card ≤ s.card * n :=
189
- card_bUnion_le.trans $ sum_le_of_forall_le _ _ _ h
189
+ card_bUnion_le.trans $ sum_le_card_nsmul _ _ _ h
190
190
191
191
variables {ι' : Type *} [decidable_eq ι']
192
192
@@ -264,7 +264,7 @@ times how many they are. -/
264
264
lemma sum_card_inter_le (h : ∀ a ∈ s, (B.filter $ (∈) a).card ≤ n) :
265
265
∑ t in B, (s ∩ t).card ≤ s.card * n :=
266
266
begin
267
- refine le_trans _ (s.sum_le_of_forall_le _ _ h),
267
+ refine le_trans _ (s.sum_le_card_nsmul _ _ h),
268
268
simp_rw [←filter_mem_eq_inter, card_eq_sum_ones, sum_filter],
269
269
exact sum_comm.le,
270
270
end
@@ -281,7 +281,7 @@ times how many they are. -/
281
281
lemma le_sum_card_inter (h : ∀ a ∈ s, n ≤ (B.filter $ (∈) a).card) :
282
282
s.card * n ≤ ∑ t in B, (s ∩ t).card :=
283
283
begin
284
- apply (s.le_sum_of_forall_le _ _ h).trans,
284
+ apply (s.card_nsmul_le_sum _ _ h).trans,
285
285
simp_rw [←filter_mem_eq_inter, card_eq_sum_ones, sum_filter],
286
286
exact sum_comm.le,
287
287
end
0 commit comments