|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Rémy Degenne. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Rémy Degenne |
| 5 | +-/ |
| 6 | + |
| 7 | +import probability.variance |
| 8 | + |
| 9 | +/-! |
| 10 | +# Moments and moment generating function |
| 11 | +
|
| 12 | +## Main definitions |
| 13 | +
|
| 14 | +* `moment X p μ`: `p`th moment of a real random variable `X` with respect to measure `μ`, `μ[X^p]` |
| 15 | +* `central_moment X p μ`:`p`th central moment of `X` with respect to measure `μ`, `μ[(X - μ[X])^p]` |
| 16 | +* `mgf X μ t`: moment generating function of `X` with respect to measure `μ`, `μ[exp(t*X)]` |
| 17 | +* `cgf X μ t`: cumulant generating function, logarithm of the moment generating function |
| 18 | +
|
| 19 | +## Main results |
| 20 | +
|
| 21 | +* `indep_fun.mgf_add`: if two real random variables `X` and `Y` are independent and their mgf are |
| 22 | + defined at `t`, then `mgf (X + Y) μ t = mgf X μ t * mgf Y μ t` |
| 23 | +* `indep_fun.cgf_add`: if two real random variables `X` and `Y` are independent and their mgf are |
| 24 | + defined at `t`, then `cgf (X + Y) μ t = cgf X μ t + cgf Y μ t` |
| 25 | +
|
| 26 | +-/ |
| 27 | + |
| 28 | +open measure_theory filter finset |
| 29 | + |
| 30 | +noncomputable theory |
| 31 | + |
| 32 | +open_locale big_operators measure_theory probability_theory ennreal nnreal |
| 33 | + |
| 34 | +namespace probability_theory |
| 35 | + |
| 36 | +variables {Ω : Type*} {m : measurable_space Ω} {X : Ω → ℝ} {p : ℕ} {μ : measure Ω} |
| 37 | + |
| 38 | +include m |
| 39 | + |
| 40 | +/-- Moment of a real random variable, `μ[X ^ p]`. -/ |
| 41 | +def moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[X ^ p] |
| 42 | + |
| 43 | +/-- Central moment of a real random variable, `μ[(X - μ[X]) ^ p]`. -/ |
| 44 | +def central_moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[(X - (λ x, μ[X])) ^ p] |
| 45 | + |
| 46 | +@[simp] lemma moment_zero (hp : p ≠ 0) : moment 0 p μ = 0 := |
| 47 | +by simp only [moment, hp, zero_pow', ne.def, not_false_iff, pi.zero_apply, integral_const, |
| 48 | + algebra.id.smul_eq_mul, mul_zero] |
| 49 | + |
| 50 | +@[simp] lemma central_moment_zero (hp : p ≠ 0) : central_moment 0 p μ = 0 := |
| 51 | +by simp only [central_moment, hp, pi.zero_apply, integral_const, algebra.id.smul_eq_mul, |
| 52 | + mul_zero, zero_sub, pi.pow_apply, pi.neg_apply, neg_zero', zero_pow', ne.def, not_false_iff] |
| 53 | + |
| 54 | +lemma central_moment_one' [is_finite_measure μ] (h_int : integrable X μ) : |
| 55 | + central_moment X 1 μ = (1 - (μ set.univ).to_real) * μ[X] := |
| 56 | +begin |
| 57 | + simp only [central_moment, pi.sub_apply, pow_one], |
| 58 | + rw integral_sub h_int (integrable_const _), |
| 59 | + simp only [sub_mul, integral_const, algebra.id.smul_eq_mul, one_mul], |
| 60 | +end |
| 61 | + |
| 62 | +@[simp] lemma central_moment_one [is_probability_measure μ] : central_moment X 1 μ = 0 := |
| 63 | +begin |
| 64 | + by_cases h_int : integrable X μ, |
| 65 | + { rw central_moment_one' h_int, |
| 66 | + simp only [measure_univ, ennreal.one_to_real, sub_self, zero_mul], }, |
| 67 | + { simp only [central_moment, pi.sub_apply, pow_one], |
| 68 | + have : ¬ integrable (λ x, X x - integral μ X) μ, |
| 69 | + { refine λ h_sub, h_int _, |
| 70 | + have h_add : X = (λ x, X x - integral μ X) + (λ x, integral μ X), |
| 71 | + { ext1 x, simp, }, |
| 72 | + rw h_add, |
| 73 | + exact h_sub.add (integrable_const _), }, |
| 74 | + rw integral_undef this, }, |
| 75 | +end |
| 76 | + |
| 77 | +@[simp] lemma central_moment_two_eq_variance : central_moment X 2 μ = variance X μ := rfl |
| 78 | + |
| 79 | +section moment_generating_function |
| 80 | + |
| 81 | +variables {t : ℝ} |
| 82 | + |
| 83 | +/-- Moment generating function of a real random variable `X`: `λ t, μ[exp(t*X)]`. -/ |
| 84 | +def mgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := μ[λ ω, real.exp (t * X ω)] |
| 85 | + |
| 86 | +/-- Cumulant generating function of a real random variable `X`: `λ t, log μ[exp(t*X)]`. -/ |
| 87 | +def cgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := real.log (mgf X μ t) |
| 88 | + |
| 89 | +@[simp] lemma mgf_zero_fun : mgf 0 μ t = (μ set.univ).to_real := |
| 90 | +by simp only [mgf, pi.zero_apply, mul_zero, real.exp_zero, integral_const, algebra.id.smul_eq_mul, |
| 91 | + mul_one] |
| 92 | + |
| 93 | +@[simp] lemma cgf_zero_fun : cgf 0 μ t = real.log (μ set.univ).to_real := |
| 94 | +by simp only [cgf, mgf_zero_fun] |
| 95 | + |
| 96 | +@[simp] lemma mgf_zero_measure : mgf X (0 : measure Ω) t = 0 := |
| 97 | +by simp only [mgf, integral_zero_measure] |
| 98 | + |
| 99 | +@[simp] lemma cgf_zero_measure : cgf X (0 : measure Ω) t = 0 := |
| 100 | +by simp only [cgf, real.log_zero, mgf_zero_measure] |
| 101 | + |
| 102 | +@[simp] lemma mgf_const' (c : ℝ) : mgf (λ _, c) μ t = (μ set.univ).to_real * real.exp (t * c) := |
| 103 | +by simp only [mgf, integral_const, algebra.id.smul_eq_mul] |
| 104 | + |
| 105 | +@[simp] lemma mgf_const (c : ℝ) [is_probability_measure μ] : mgf (λ _, c) μ t = real.exp (t * c) := |
| 106 | +by simp only [mgf_const', measure_univ, ennreal.one_to_real, one_mul] |
| 107 | + |
| 108 | +@[simp] lemma cgf_const' [is_finite_measure μ] (hμ : μ ≠ 0) (c : ℝ) : |
| 109 | + cgf (λ _, c) μ t = real.log (μ set.univ).to_real + t * c := |
| 110 | +begin |
| 111 | + simp only [cgf, mgf_const'], |
| 112 | + rw real.log_mul _ (real.exp_pos _).ne', |
| 113 | + { rw real.log_exp _, }, |
| 114 | + { rw [ne.def, ennreal.to_real_eq_zero_iff, measure.measure_univ_eq_zero], |
| 115 | + simp only [hμ, measure_ne_top μ set.univ, or_self, not_false_iff], }, |
| 116 | +end |
| 117 | + |
| 118 | +@[simp] lemma cgf_const [is_probability_measure μ] (c : ℝ) : cgf (λ _, c) μ t = t * c := |
| 119 | +by simp only [cgf, mgf_const, real.log_exp] |
| 120 | + |
| 121 | +@[simp] lemma mgf_zero' : mgf X μ 0 = (μ set.univ).to_real := |
| 122 | +by simp only [mgf, zero_mul, real.exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one] |
| 123 | + |
| 124 | +@[simp] lemma mgf_zero [is_probability_measure μ] : mgf X μ 0 = 1 := |
| 125 | +by simp only [mgf_zero', measure_univ, ennreal.one_to_real] |
| 126 | + |
| 127 | +@[simp] lemma cgf_zero' : cgf X μ 0 = real.log (μ set.univ).to_real := |
| 128 | +by simp only [cgf, mgf_zero'] |
| 129 | + |
| 130 | +@[simp] lemma cgf_zero [is_probability_measure μ] : cgf X μ 0 = 0 := |
| 131 | +by simp only [cgf_zero', measure_univ, ennreal.one_to_real, real.log_one] |
| 132 | + |
| 133 | +lemma mgf_undef (hX : ¬ integrable (λ ω, real.exp (t * X ω)) μ) : mgf X μ t = 0 := |
| 134 | +by simp only [mgf, integral_undef hX] |
| 135 | + |
| 136 | +lemma cgf_undef (hX : ¬ integrable (λ ω, real.exp (t * X ω)) μ) : cgf X μ t = 0 := |
| 137 | +by simp only [cgf, mgf_undef hX, real.log_zero] |
| 138 | + |
| 139 | +lemma mgf_nonneg : 0 ≤ mgf X μ t := |
| 140 | +begin |
| 141 | + refine integral_nonneg _, |
| 142 | + intro ω, |
| 143 | + simp only [pi.zero_apply], |
| 144 | + exact (real.exp_pos _).le, |
| 145 | +end |
| 146 | + |
| 147 | +lemma mgf_pos' (hμ : μ ≠ 0) (h_int_X : integrable (λ ω, real.exp (t * X ω)) μ) : 0 < mgf X μ t := |
| 148 | +begin |
| 149 | + simp_rw mgf, |
| 150 | + have : ∫ (x : Ω), real.exp (t * X x) ∂μ = ∫ (x : Ω) in set.univ, real.exp (t * X x) ∂μ, |
| 151 | + { simp only [measure.restrict_univ], }, |
| 152 | + rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _], |
| 153 | + { have h_eq_univ : function.support (λ (x : Ω), real.exp (t * X x)) = set.univ, |
| 154 | + { ext1 x, |
| 155 | + simp only [function.mem_support, set.mem_univ, iff_true], |
| 156 | + exact (real.exp_pos _).ne', }, |
| 157 | + rw [h_eq_univ, set.inter_univ _], |
| 158 | + refine ne.bot_lt _, |
| 159 | + simp only [hμ, ennreal.bot_eq_zero, ne.def, measure.measure_univ_eq_zero, not_false_iff], }, |
| 160 | + { refine eventually_of_forall (λ x, _), |
| 161 | + rw pi.zero_apply, |
| 162 | + exact (real.exp_pos _).le, }, |
| 163 | + { rwa integrable_on_univ, }, |
| 164 | +end |
| 165 | + |
| 166 | +lemma mgf_pos [is_probability_measure μ] (h_int_X : integrable (λ ω, real.exp (t * X ω)) μ) : |
| 167 | + 0 < mgf X μ t := |
| 168 | +mgf_pos' (is_probability_measure.ne_zero μ) h_int_X |
| 169 | + |
| 170 | +lemma indep_fun.mgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) |
| 171 | + (h_int_X : integrable (λ ω, real.exp (t * X ω)) μ) |
| 172 | + (h_int_Y : integrable (λ ω, real.exp (t * Y ω)) μ) : |
| 173 | + mgf (X + Y) μ t = mgf X μ t * mgf Y μ t := |
| 174 | +begin |
| 175 | + simp_rw [mgf, pi.add_apply, mul_add, real.exp_add], |
| 176 | + refine indep_fun.integral_mul_of_integrable' _ h_int_X h_int_Y, |
| 177 | + have h_meas : measurable (λ x, real.exp (t * x)) := (measurable_id'.const_mul t).exp, |
| 178 | + change indep_fun ((λ x, real.exp (t * x)) ∘ X) ((λ x, real.exp (t * x)) ∘ Y) μ, |
| 179 | + exact indep_fun.comp h_indep h_meas h_meas, |
| 180 | +end |
| 181 | + |
| 182 | +lemma indep_fun.cgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) |
| 183 | + (h_int_X : integrable (λ ω, real.exp (t * X ω)) μ) |
| 184 | + (h_int_Y : integrable (λ ω, real.exp (t * Y ω)) μ) : |
| 185 | + cgf (X + Y) μ t = cgf X μ t + cgf Y μ t := |
| 186 | +begin |
| 187 | + by_cases hμ : μ = 0, |
| 188 | + { simp [hμ], }, |
| 189 | + simp only [cgf, h_indep.mgf_add h_int_X h_int_Y], |
| 190 | + exact real.log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne', |
| 191 | +end |
| 192 | + |
| 193 | +end moment_generating_function |
| 194 | + |
| 195 | +end probability_theory |
0 commit comments