|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yury G. Kudryashov |
| 5 | +-/ |
| 6 | +import analysis.special_functions.pow |
| 7 | +import number_theory.liouville.basic |
| 8 | +import topology.instances.irrational |
| 9 | + |
| 10 | +/-! |
| 11 | +# Liouville numbers with a given exponent |
| 12 | +
|
| 13 | +We say that a real number `x` is a Liouville number with exponent `p : ℝ` if there exists a real |
| 14 | +number `C` such that for infinitely many denominators `n` there exists a numerator `m` such that |
| 15 | +`x ≠ m / n` and `|x - m / n| < C / n ^ p`. A number is a Liouville number in the sense of |
| 16 | +`liouville` if it is `liouville_with` any real exponent, see `forall_liouville_with_iff`. |
| 17 | +
|
| 18 | +* If `p ≤ 1`, then this condition is trivial. |
| 19 | +
|
| 20 | +* If `1 < p ≤ 2`, then this condition is equivalent to `irrational x`. The forward implication |
| 21 | + does not require `p ≤ 2` and is formalized as `liouville_with.irrational`; the other implication |
| 22 | + follows from approximations by continued fractions and is not formalized yet. |
| 23 | +
|
| 24 | +* If `p > 2`, then this is a non-trivial condition on irrational numbers. In particular, |
| 25 | + [Thue–Siegel–Roth theorem](https://en.wikipedia.org/wiki/Roth's_theorem) states that such numbers |
| 26 | + must be transcendental. |
| 27 | +
|
| 28 | +In this file we define the predicate `liouville_with` and prove some basic facts about this |
| 29 | +predicate. |
| 30 | +
|
| 31 | +## Tags |
| 32 | +
|
| 33 | +Liouville number, irrational, irrationality exponent |
| 34 | +-/ |
| 35 | + |
| 36 | +open filter metric real set |
| 37 | +open_locale filter topological_space |
| 38 | + |
| 39 | +/-- We say that a real number `x` is a Liouville number with exponent `p : ℝ` if there exists a real |
| 40 | +number `C` such that for infinitely many denominators `n` there exists a numerator `m` such that |
| 41 | +`x ≠ m / n` and `|x - m / n| < C / n ^ p`. |
| 42 | +
|
| 43 | +A number is a Liouville number in the sense of `liouville` if it is `liouville_with` any real |
| 44 | +exponent. -/ |
| 45 | +def liouville_with (p x : ℝ) : Prop := |
| 46 | +∃ C, ∃ᶠ n : ℕ in at_top, ∃ m : ℤ, x ≠ m / n ∧ |x - m / n| < C / n ^ p |
| 47 | + |
| 48 | +/-- For `p = 1` (hence, for any `p ≤ 1`), the condition `liouville_with p x` is trivial. -/ |
| 49 | +lemma liouville_with_one (x : ℝ) : liouville_with 1 x := |
| 50 | +begin |
| 51 | + use 2, |
| 52 | + refine ((eventually_gt_at_top 0).mono $ λ n hn, _).frequently, |
| 53 | + have hn' : (0 : ℝ) < n, by simpa, |
| 54 | + have : x < ↑(⌊x * ↑n⌋ + 1) / ↑n, |
| 55 | + { rw [lt_div_iff hn', int.cast_add, int.cast_one], exact int.lt_floor_add_one _ }, |
| 56 | + refine ⟨⌊x * n⌋ + 1, this.ne, _⟩, |
| 57 | + rw [abs_sub_comm, abs_of_pos (sub_pos.2 this), rpow_one, sub_lt_iff_lt_add', |
| 58 | + add_div_eq_mul_add_div _ _ hn'.ne', div_lt_div_right hn'], |
| 59 | + simpa [bit0, ← add_assoc] using (int.floor_le (x * n)).trans_lt (lt_add_one _) |
| 60 | +end |
| 61 | + |
| 62 | +namespace liouville_with |
| 63 | + |
| 64 | +variables {p q x y : ℝ} {r : ℚ} {m : ℤ} {n : ℕ} |
| 65 | + |
| 66 | +/-- The constant `C` provided by the definition of `liouville_with` can be made positive. |
| 67 | +We also add `1 ≤ n` to the list of assumptions about the denominator. While it is equivalent to |
| 68 | +the original statement, the case `n = 0` breaks many arguments. -/ |
| 69 | +lemma exists_pos (h : liouville_with p x) : |
| 70 | + ∃ (C : ℝ) (h₀ : 0 < C), |
| 71 | + ∃ᶠ n : ℕ in at_top, 1 ≤ n ∧ ∃ m : ℤ, x ≠ m / n ∧ |x - m / n| < C / n ^ p := |
| 72 | +begin |
| 73 | + rcases h with ⟨C, hC⟩, |
| 74 | + refine ⟨max C 1, zero_lt_one.trans_le $ le_max_right _ _, _⟩, |
| 75 | + refine ((eventually_ge_at_top 1).and_frequently hC).mono _, |
| 76 | + rintro n ⟨hle, m, hne, hlt⟩, |
| 77 | + refine ⟨hle, m, hne, hlt.trans_le _⟩, |
| 78 | + exact div_le_div_of_le (rpow_nonneg_of_nonneg n.cast_nonneg _) (le_max_left _ _) |
| 79 | +end |
| 80 | + |
| 81 | +/-- If a number is Liouville with exponent `p`, then it is Liouville with any smaller exponent. -/ |
| 82 | +lemma mono (h : liouville_with p x) (hle : q ≤ p) : liouville_with q x := |
| 83 | +begin |
| 84 | + rcases h.exists_pos with ⟨C, hC₀, hC⟩, |
| 85 | + refine ⟨C, hC.mono _⟩, rintro n ⟨hn, m, hne, hlt⟩, |
| 86 | + refine ⟨m, hne, hlt.trans_le $ div_le_div_of_le_left hC₀.le _ _⟩, |
| 87 | + exacts [rpow_pos_of_pos (nat.cast_pos.2 hn) _, |
| 88 | + rpow_le_rpow_of_exponent_le (nat.one_le_cast.2 hn) hle] |
| 89 | +end |
| 90 | + |
| 91 | +/-- If `x` satisfies Liouville condition with exponent `p` and `q < p`, then `x` |
| 92 | +satisfies Liouville condition with exponent `q` and constant `1`. -/ |
| 93 | +lemma frequently_lt_rpow_neg (h : liouville_with p x) (hlt : q < p) : |
| 94 | + ∃ᶠ n : ℕ in at_top, ∃ m : ℤ, x ≠ m / n ∧ |x - m / n| < n ^ (-q) := |
| 95 | +begin |
| 96 | + rcases h.exists_pos with ⟨C, hC₀, hC⟩, |
| 97 | + have : ∀ᶠ n : ℕ in at_top, C < n ^ (p - q), |
| 98 | + by simpa only [(∘), neg_sub, one_div] using ((tendsto_rpow_at_top (sub_pos.2 hlt)).comp |
| 99 | + tendsto_coe_nat_at_top_at_top).eventually (eventually_gt_at_top C), |
| 100 | + refine (this.and_frequently hC).mono _, |
| 101 | + rintro n ⟨hnC, hn, m, hne, hlt⟩, |
| 102 | + replace hn : (0 : ℝ) < n := nat.cast_pos.2 hn, |
| 103 | + refine ⟨m, hne, hlt.trans $ (div_lt_iff $ rpow_pos_of_pos hn _).2 _⟩, |
| 104 | + rwa [mul_comm, ← rpow_add hn, ← sub_eq_add_neg] |
| 105 | +end |
| 106 | + |
| 107 | +/-- The product of a Liouville number and a nonzero rational number is again a Liouville number. -/ |
| 108 | +lemma mul_rat (h : liouville_with p x) (hr : r ≠ 0) : liouville_with p (x * r) := |
| 109 | +begin |
| 110 | + rcases h.exists_pos with ⟨C, hC₀, hC⟩, |
| 111 | + refine ⟨r.denom ^ p * (|r| * C), (tendsto_id.nsmul_at_top r.pos).frequently (hC.mono _)⟩, |
| 112 | + rintro n ⟨hn, m, hne, hlt⟩, |
| 113 | + have A : (↑(r.num * m) : ℝ) / ↑(r.denom • id n) = (m / n) * r, |
| 114 | + by simp [← div_mul_div, ← r.cast_def, mul_comm], |
| 115 | + refine ⟨r.num * m, _, _⟩, |
| 116 | + { rw A, simp [hne, hr] }, |
| 117 | + { rw [A, ← sub_mul, abs_mul], |
| 118 | + simp only [smul_eq_mul, id.def, nat.cast_mul], |
| 119 | + refine (mul_lt_mul_of_pos_right hlt $ abs_pos.2 $ rat.cast_ne_zero.2 hr).trans_le _, |
| 120 | + rw [mul_rpow, mul_div_mul_left, mul_comm, mul_div_assoc], |
| 121 | + exacts [(rpow_pos_of_pos (nat.cast_pos.2 r.pos) _).ne', nat.cast_nonneg _, nat.cast_nonneg _] } |
| 122 | +end |
| 123 | + |
| 124 | +/-- The product `x * r`, `r : ℚ`, `r ≠ 0`, is a Liouville number with exponent `p` if and only if |
| 125 | +`x` satisfies the same condition. -/ |
| 126 | +lemma mul_rat_iff (hr : r ≠ 0) : liouville_with p (x * r) ↔ liouville_with p x := |
| 127 | +⟨λ h, by simpa only [mul_assoc, ← rat.cast_mul, mul_inv_cancel hr, rat.cast_one, mul_one] |
| 128 | + using h.mul_rat (inv_ne_zero hr), λ h, h.mul_rat hr⟩ |
| 129 | + |
| 130 | +/-- The product `r * x`, `r : ℚ`, `r ≠ 0`, is a Liouville number with exponent `p` if and only if |
| 131 | +`x` satisfies the same condition. -/ |
| 132 | +lemma rat_mul_iff (hr : r ≠ 0) : liouville_with p (r * x) ↔ liouville_with p x := |
| 133 | +by rw [mul_comm, mul_rat_iff hr] |
| 134 | + |
| 135 | +lemma rat_mul (h : liouville_with p x) (hr : r ≠ 0) : liouville_with p (r * x) := |
| 136 | +(rat_mul_iff hr).2 h |
| 137 | + |
| 138 | +lemma mul_int_iff (hm : m ≠ 0) : liouville_with p (x * m) ↔ liouville_with p x := |
| 139 | +by rw [← rat.cast_coe_int, mul_rat_iff (int.cast_ne_zero.2 hm)] |
| 140 | + |
| 141 | +lemma mul_int (h : liouville_with p x) (hm : m ≠ 0) : liouville_with p (x * m) := |
| 142 | +(mul_int_iff hm).2 h |
| 143 | + |
| 144 | +lemma int_mul_iff (hm : m ≠ 0) : liouville_with p (m * x) ↔ liouville_with p x := |
| 145 | +by rw [mul_comm, mul_int_iff hm] |
| 146 | + |
| 147 | +lemma int_mul (h : liouville_with p x) (hm : m ≠ 0) : liouville_with p (m * x) := |
| 148 | +(int_mul_iff hm).2 h |
| 149 | + |
| 150 | +lemma mul_nat_iff (hn : n ≠ 0) : liouville_with p (x * n) ↔ liouville_with p x := |
| 151 | +by rw [← rat.cast_coe_nat, mul_rat_iff (nat.cast_ne_zero.2 hn)] |
| 152 | + |
| 153 | +lemma mul_nat (h : liouville_with p x) (hn : n ≠ 0) : liouville_with p (x * n) := |
| 154 | +(mul_nat_iff hn).2 h |
| 155 | + |
| 156 | +lemma nat_mul_iff (hn : n ≠ 0) : liouville_with p (n * x) ↔ liouville_with p x:= |
| 157 | +by rw [mul_comm, mul_nat_iff hn] |
| 158 | + |
| 159 | +lemma nat_mul (h : liouville_with p x) (hn : n ≠ 0) : liouville_with p (n * x) := |
| 160 | +by { rw mul_comm, exact h.mul_nat hn } |
| 161 | + |
| 162 | +lemma add_rat (h : liouville_with p x) (r : ℚ) : liouville_with p (x + r) := |
| 163 | +begin |
| 164 | + rcases h.exists_pos with ⟨C, hC₀, hC⟩, |
| 165 | + refine ⟨r.denom ^ p * C, (tendsto_id.nsmul_at_top r.pos).frequently (hC.mono _)⟩, |
| 166 | + rintro n ⟨hn, m, hne, hlt⟩, |
| 167 | + have hr : (0 : ℝ) < r.denom, from nat.cast_pos.2 r.pos, |
| 168 | + have hn' : (n : ℝ) ≠ 0, from nat.cast_ne_zero.2 (zero_lt_one.trans_le hn).ne', |
| 169 | + have : (↑(r.denom * m + r.num * n : ℤ) / ↑(r.denom • id n) : ℝ) = m / n + r, |
| 170 | + by simp [add_div, hr.ne', mul_div_mul_left, mul_div_mul_right, hn', ← rat.cast_def], |
| 171 | + refine ⟨r.denom * m + r.num * n, _⟩, rw [this, add_sub_add_right_eq_sub], |
| 172 | + refine ⟨by simpa, hlt.trans_le (le_of_eq _)⟩, |
| 173 | + have : (r.denom ^ p : ℝ) ≠ 0, from (rpow_pos_of_pos hr _).ne', |
| 174 | + simp [mul_rpow, nat.cast_nonneg, mul_div_mul_left, this] |
| 175 | +end |
| 176 | + |
| 177 | +@[simp] lemma add_rat_iff : liouville_with p (x + r) ↔ liouville_with p x := |
| 178 | +⟨λ h, by simpa using h.add_rat (-r), λ h, h.add_rat r⟩ |
| 179 | + |
| 180 | +@[simp] lemma rat_add_iff : liouville_with p (r + x) ↔ liouville_with p x := |
| 181 | +by rw [add_comm, add_rat_iff] |
| 182 | + |
| 183 | +lemma rat_add (h : liouville_with p x) (r : ℚ) : liouville_with p (r + x) := |
| 184 | +add_comm x r ▸ h.add_rat r |
| 185 | + |
| 186 | +@[simp] lemma add_int_iff : liouville_with p (x + m) ↔ liouville_with p x := |
| 187 | +by rw [← rat.cast_coe_int m, add_rat_iff] |
| 188 | + |
| 189 | +@[simp] lemma int_add_iff : liouville_with p (m + x) ↔ liouville_with p x := |
| 190 | +by rw [add_comm, add_int_iff] |
| 191 | + |
| 192 | +@[simp] lemma add_nat_iff : liouville_with p (x + n) ↔ liouville_with p x := |
| 193 | +by rw [← rat.cast_coe_nat n, add_rat_iff] |
| 194 | + |
| 195 | +@[simp] lemma nat_add_iff : liouville_with p (n + x) ↔ liouville_with p x := |
| 196 | +by rw [add_comm, add_nat_iff] |
| 197 | + |
| 198 | +lemma add_int (h : liouville_with p x) (m : ℤ) : liouville_with p (x + m) := add_int_iff.2 h |
| 199 | + |
| 200 | +lemma int_add (h : liouville_with p x) (m : ℤ) : liouville_with p (m + x) := int_add_iff.2 h |
| 201 | + |
| 202 | +lemma add_nat (h : liouville_with p x) (n : ℕ) : liouville_with p (x + n) := h.add_int n |
| 203 | + |
| 204 | +lemma nat_add (h : liouville_with p x) (n : ℕ) : liouville_with p (n + x) := h.int_add n |
| 205 | + |
| 206 | +protected lemma neg (h : liouville_with p x) : liouville_with p (-x) := |
| 207 | +begin |
| 208 | + rcases h with ⟨C, hC⟩, |
| 209 | + refine ⟨C, hC.mono _⟩, |
| 210 | + rintro n ⟨m, hne, hlt⟩, |
| 211 | + use (-m), simp [neg_div, abs_sub_comm _ x, *] |
| 212 | +end |
| 213 | + |
| 214 | +@[simp] lemma neg_iff : liouville_with p (-x) ↔ liouville_with p x := |
| 215 | +⟨λ h, neg_neg x ▸ h.neg, liouville_with.neg⟩ |
| 216 | + |
| 217 | +@[simp] lemma sub_rat_iff : liouville_with p (x - r) ↔ liouville_with p x := |
| 218 | +by rw [sub_eq_add_neg, ← rat.cast_neg, add_rat_iff] |
| 219 | + |
| 220 | +lemma sub_rat (h : liouville_with p x) (r : ℚ) : liouville_with p (x - r) := |
| 221 | +sub_rat_iff.2 h |
| 222 | + |
| 223 | +@[simp] lemma sub_int_iff : liouville_with p (x - m) ↔ liouville_with p x := |
| 224 | +by rw [← rat.cast_coe_int, sub_rat_iff] |
| 225 | + |
| 226 | +lemma sub_int (h : liouville_with p x) (m : ℤ) : liouville_with p (x - m) := sub_int_iff.2 h |
| 227 | + |
| 228 | +@[simp] lemma sub_nat_iff : liouville_with p (x - n) ↔ liouville_with p x := |
| 229 | +by rw [← rat.cast_coe_nat, sub_rat_iff] |
| 230 | + |
| 231 | +lemma sub_nat (h : liouville_with p x) (n : ℕ) : liouville_with p (x - n) := sub_nat_iff.2 h |
| 232 | + |
| 233 | +@[simp] lemma rat_sub_iff : liouville_with p (r - x) ↔ liouville_with p x := |
| 234 | +by simp [sub_eq_add_neg] |
| 235 | + |
| 236 | +lemma rat_sub (h : liouville_with p x) (r : ℚ) : liouville_with p (r - x) := rat_sub_iff.2 h |
| 237 | + |
| 238 | +@[simp] lemma int_sub_iff : liouville_with p (m - x) ↔ liouville_with p x := |
| 239 | +by simp [sub_eq_add_neg] |
| 240 | + |
| 241 | +lemma int_sub (h : liouville_with p x) (m : ℤ) : liouville_with p (m - x) := int_sub_iff.2 h |
| 242 | + |
| 243 | +@[simp] lemma nat_sub_iff : liouville_with p (n - x) ↔ liouville_with p x := |
| 244 | +by simp [sub_eq_add_neg] |
| 245 | + |
| 246 | +lemma nat_sub (h : liouville_with p x) (n : ℕ) : liouville_with p (n - x) := nat_sub_iff.2 h |
| 247 | + |
| 248 | +lemma ne_cast_int (h : liouville_with p x) (hp : 1 < p) (m : ℤ) : x ≠ m := |
| 249 | +begin |
| 250 | + rintro rfl, rename m M, |
| 251 | + rcases ((eventually_gt_at_top 0).and_frequently (h.frequently_lt_rpow_neg hp)).exists |
| 252 | + with ⟨n : ℕ, hn : 0 < n, m : ℤ, hne : (M : ℝ) ≠ m / n, hlt : |(M - m / n : ℝ)| < n ^ (-1 : ℝ)⟩, |
| 253 | + refine hlt.not_le _, |
| 254 | + have hn' : (0 : ℝ) < n, by simpa, |
| 255 | + rw [rpow_neg_one, ← one_div, sub_div' _ _ _ hn'.ne', abs_div, nat.abs_cast, div_le_div_right hn'], |
| 256 | + norm_cast, |
| 257 | + rw [← zero_add (1 : ℤ), int.add_one_le_iff, abs_pos, sub_ne_zero], |
| 258 | + rw [ne.def, eq_div_iff hn'.ne'] at hne, |
| 259 | + exact_mod_cast hne |
| 260 | +end |
| 261 | + |
| 262 | +/-- A number satisfying the Liouville condition with exponent `p > 1` is an irrational number. -/ |
| 263 | +protected lemma irrational (h : liouville_with p x) (hp : 1 < p) : irrational x := |
| 264 | +begin |
| 265 | + rintro ⟨r, rfl⟩, |
| 266 | + rcases eq_or_ne r 0 with (rfl|h0), |
| 267 | + { refine h.ne_cast_int hp 0 _, rw [rat.cast_zero, int.cast_zero] }, |
| 268 | + { refine (h.mul_rat (inv_ne_zero h0)).ne_cast_int hp 1 _, |
| 269 | + simp [rat.cast_ne_zero.2 h0] } |
| 270 | +end |
| 271 | + |
| 272 | +end liouville_with |
| 273 | + |
| 274 | +namespace liouville |
| 275 | + |
| 276 | +variables {x : ℝ} |
| 277 | + |
| 278 | +/-- If `x` is a Liouville number, then for any `n`, for infinitely many denominators `b` there |
| 279 | +exists a numerator `a` such that `x ≠ a / b` and `|x - a / b| < 1 / b ^ n`. -/ |
| 280 | +lemma frequently_exists_num (hx : liouville x) (n : ℕ) : |
| 281 | + ∃ᶠ b : ℕ in at_top, ∃ a : ℤ, x ≠ a / b ∧ |x - a / b| < 1 / b ^ n := |
| 282 | +begin |
| 283 | + refine not_not.1 (λ H, _), |
| 284 | + simp only [liouville, not_forall, not_exists, not_frequently, not_and, not_lt, |
| 285 | + eventually_at_top] at H, |
| 286 | + rcases H with ⟨N, hN⟩, |
| 287 | + have : ∀ b > (1 : ℕ), ∀ᶠ m : ℕ in at_top, ∀ a : ℤ, (1 / b ^ m : ℝ) ≤ |x - a / b|, |
| 288 | + { intros b hb, |
| 289 | + have hb0' : (b : ℚ) ≠ 0 := (zero_lt_one.trans (nat.one_lt_cast.2 hb)).ne', |
| 290 | + replace hb : (1 : ℝ) < b := nat.one_lt_cast.2 hb, |
| 291 | + have hb0 : (0 : ℝ) < b := zero_lt_one.trans hb, |
| 292 | + have H : tendsto (λ m, 1 / b ^ m : ℕ → ℝ) at_top (𝓝 0), |
| 293 | + { simp only [one_div], |
| 294 | + exact tendsto_inv_at_top_zero.comp (tendsto_pow_at_top_at_top_of_one_lt hb) }, |
| 295 | + refine (H.eventually (hx.irrational.eventually_forall_le_dist_cast_div b)).mono _, |
| 296 | + exact λ m hm a, hm a }, |
| 297 | + have : ∀ᶠ m : ℕ in at_top, ∀ b < N, 1 < b → ∀ a : ℤ, (1 / b ^ m : ℝ) ≤ |x - a / b|, |
| 298 | + from (finite_lt_nat N).eventually_all.2 (λ b hb, eventually_imp_distrib_left.2 (this b)), |
| 299 | + rcases (this.and (eventually_ge_at_top n)).exists with ⟨m, hm, hnm⟩, |
| 300 | + rcases hx m with ⟨a, b, hb, hne, hlt⟩, |
| 301 | + lift b to ℕ using zero_le_one.trans hb.le, norm_cast at hb, push_cast at hne hlt, |
| 302 | + cases le_or_lt N b, |
| 303 | + { refine (hN b h a hne).not_lt (hlt.trans_le _), |
| 304 | + replace hb : (1 : ℝ) < b := nat.one_lt_cast.2 hb, |
| 305 | + have hb0 : (0 : ℝ) < b := zero_lt_one.trans hb, |
| 306 | + exact one_div_le_one_div_of_le (pow_pos hb0 _) (pow_le_pow hb.le hnm) }, |
| 307 | + { exact (hm b h hb _).not_lt hlt } |
| 308 | +end |
| 309 | + |
| 310 | +/-- A Liouville number is a Liouville number with any real exponent. -/ |
| 311 | +protected lemma liouville_with (hx : liouville x) (p : ℝ) : liouville_with p x := |
| 312 | +begin |
| 313 | + suffices : liouville_with ⌈p⌉₊ x, from this.mono (nat.le_ceil p), |
| 314 | + refine ⟨1, ((eventually_gt_at_top 1).and_frequently (hx.frequently_exists_num ⌈p⌉₊)).mono _⟩, |
| 315 | + rintro b ⟨hb, a, hne, hlt⟩, |
| 316 | + refine ⟨a, hne, _⟩, |
| 317 | + rwa rpow_nat_cast |
| 318 | +end |
| 319 | + |
| 320 | +end liouville |
| 321 | + |
| 322 | +/-- A number satisfies the Liouville condition with any exponent if and only if it is a Liouville |
| 323 | +number. -/ |
| 324 | +lemma forall_liouville_with_iff {x : ℝ} : (∀ p, liouville_with p x) ↔ liouville x := |
| 325 | +begin |
| 326 | + refine ⟨λ H n, _, liouville.liouville_with⟩, |
| 327 | + rcases ((eventually_gt_at_top 1).and_frequently |
| 328 | + ((H (n + 1)).frequently_lt_rpow_neg (lt_add_one n))).exists with ⟨b, hb, a, hne, hlt⟩, |
| 329 | + exact ⟨a, b, by exact_mod_cast hb, hne, by simpa [rpow_neg] using hlt⟩, |
| 330 | +end |
0 commit comments