@@ -1319,7 +1319,13 @@ by simpa [tsum_fintype] using lintegral_sum_measure f (λ b, cond b μ ν)
1319
1319
∫⁻ a, f a ∂(0 : measure α) = 0 :=
1320
1320
bot_unique $ by simp [lintegral]
1321
1321
1322
- lemma lintegral_in_measure_zero (s : set α) (f : α → ℝ≥0 ∞) (hs' : μ s = 0 ) :
1322
+ lemma set_lintegral_empty (f : α → ℝ≥0 ∞) : ∫⁻ x in ∅, f x ∂μ = 0 :=
1323
+ by rw [measure.restrict_empty, lintegral_zero_measure]
1324
+
1325
+ lemma set_lintegral_univ (f : α → ℝ≥0 ∞) : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ :=
1326
+ by rw measure.restrict_univ
1327
+
1328
+ lemma set_lintegral_measure_zero (s : set α) (f : α → ℝ≥0 ∞) (hs' : μ s = 0 ) :
1323
1329
∫⁻ x in s, f x ∂μ = 0 :=
1324
1330
begin
1325
1331
convert lintegral_zero_measure _,
@@ -1435,6 +1441,15 @@ begin
1435
1441
simp [hφ x, hs, indicator_le_indicator] }
1436
1442
end
1437
1443
1444
+ lemma set_lintegral_eq_const {f : α → ℝ≥0 ∞} (hf : measurable f) (r : ℝ≥0 ∞) :
1445
+ ∫⁻ x in {x | f x = r}, f x ∂μ = r * μ {x | f x = r} :=
1446
+ begin
1447
+ have : ∀ᵐ x ∂μ, x ∈ {x | f x = r} → f x = r := ae_of_all μ (λ _ hx, hx),
1448
+ erw [set_lintegral_congr_fun _ this , lintegral_const,
1449
+ measure.restrict_apply measurable_set.univ, set.univ_inter],
1450
+ exact hf (measurable_set_singleton r)
1451
+ end
1452
+
1438
1453
/-- **Chebyshev's inequality** -/
1439
1454
lemma mul_meas_ge_le_lintegral {f : α → ℝ≥0 ∞} (hf : measurable f) (ε : ℝ≥0 ∞) :
1440
1455
ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ :=
@@ -1446,6 +1461,12 @@ begin
1446
1461
exact indicator_apply_le id
1447
1462
end
1448
1463
1464
+ lemma lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0 ∞} (hf : measurable f)
1465
+ (hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
1466
+ eq_top_iff.mpr $
1467
+ calc ∞ = ∞ * μ {x | ∞ ≤ f x} : by simp [mul_eq_top, hμf.ne.symm]
1468
+ ... ≤ ∫⁻ x, f x ∂μ : mul_meas_ge_le_lintegral hf ∞
1469
+
1449
1470
lemma meas_ge_le_lintegral_div {f : α → ℝ≥0 ∞} (hf : measurable f) {ε : ℝ≥0 ∞}
1450
1471
(hε : ε ≠ 0 ) (hε' : ε ≠ ∞) :
1451
1472
μ {x | ε ≤ f x} ≤ (∫⁻ a, f a ∂μ) / ε :=
@@ -1893,7 +1914,7 @@ lemma with_density_absolutely_continuous
1893
1914
begin
1894
1915
refine absolutely_continuous.mk (λ s hs₁ hs₂, _),
1895
1916
rw with_density_apply _ hs₁,
1896
- exact lintegral_in_measure_zero _ _ hs₂
1917
+ exact set_lintegral_measure_zero _ _ hs₂
1897
1918
end
1898
1919
1899
1920
@[simp]
0 commit comments