Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 37e17c5

Browse files
committed
feat(measure_theory/integral/lebesgue): add some lintegral lemmas (#9064)
This PR contains some lemmas useful for #9065.
1 parent ae86776 commit 37e17c5

File tree

1 file changed

+23
-2
lines changed

1 file changed

+23
-2
lines changed

src/measure_theory/integral/lebesgue.lean

Lines changed: 23 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1319,7 +1319,13 @@ by simpa [tsum_fintype] using lintegral_sum_measure f (λ b, cond b μ ν)
13191319
∫⁻ a, f a ∂(0 : measure α) = 0 :=
13201320
bot_unique $ by simp [lintegral]
13211321

1322-
lemma lintegral_in_measure_zero (s : set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
1322+
lemma set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 :=
1323+
by rw [measure.restrict_empty, lintegral_zero_measure]
1324+
1325+
lemma set_lintegral_univ (f : α → ℝ≥0∞) : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ :=
1326+
by rw measure.restrict_univ
1327+
1328+
lemma set_lintegral_measure_zero (s : set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
13231329
∫⁻ x in s, f x ∂μ = 0 :=
13241330
begin
13251331
convert lintegral_zero_measure _,
@@ -1435,6 +1441,15 @@ begin
14351441
simp [hφ x, hs, indicator_le_indicator] }
14361442
end
14371443

1444+
lemma set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : measurable f) (r : ℝ≥0∞) :
1445+
∫⁻ x in {x | f x = r}, f x ∂μ = r * μ {x | f x = r} :=
1446+
begin
1447+
have : ∀ᵐ x ∂μ, x ∈ {x | f x = r} → f x = r := ae_of_all μ (λ _ hx, hx),
1448+
erw [set_lintegral_congr_fun _ this, lintegral_const,
1449+
measure.restrict_apply measurable_set.univ, set.univ_inter],
1450+
exact hf (measurable_set_singleton r)
1451+
end
1452+
14381453
/-- **Chebyshev's inequality** -/
14391454
lemma mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : measurable f) (ε : ℝ≥0∞) :
14401455
ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ :=
@@ -1446,6 +1461,12 @@ begin
14461461
exact indicator_apply_le id
14471462
end
14481463

1464+
lemma lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : measurable f)
1465+
(hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
1466+
eq_top_iff.mpr $
1467+
calc ∞ = ∞ * μ {x | ∞ ≤ f x} : by simp [mul_eq_top, hμf.ne.symm]
1468+
... ≤ ∫⁻ x, f x ∂μ : mul_meas_ge_le_lintegral hf ∞
1469+
14491470
lemma meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : measurable f) {ε : ℝ≥0∞}
14501471
(hε : ε ≠ 0) (hε' : ε ≠ ∞) :
14511472
μ {x | ε ≤ f x} ≤ (∫⁻ a, f a ∂μ) / ε :=
@@ -1893,7 +1914,7 @@ lemma with_density_absolutely_continuous
18931914
begin
18941915
refine absolutely_continuous.mk (λ s hs₁ hs₂, _),
18951916
rw with_density_apply _ hs₁,
1896-
exact lintegral_in_measure_zero _ _ hs₂
1917+
exact set_lintegral_measure_zero _ _ hs₂
18971918
end
18981919

18991920
@[simp]

0 commit comments

Comments
 (0)