@@ -1408,16 +1408,7 @@ ht.hom_ext $ λ j, by { rw ht.fac, cases j; simp }
1408
1408
bicone. -/
1409
1409
def is_binary_bilimit_of_is_limit {X Y : C} (t : binary_bicone X Y) (ht : is_limit t.to_cone) :
1410
1410
t.is_bilimit :=
1411
- is_binary_bilimit_of_total _
1412
- begin
1413
- refine binary_fan.is_limit.hom_ext ht _ _,
1414
- { rw [inl_of_is_limit ht, inr_of_is_limit ht, add_comp, category.assoc, category.assoc, ht.fac,
1415
- ht.fac, binary_fan.mk_π_app_left, binary_fan.mk_π_app_left, comp_zero, add_zero,
1416
- binary_bicone.binary_fan_fst_to_cone, category.comp_id, category.id_comp] },
1417
- { rw [inr_of_is_limit ht, inl_of_is_limit ht, add_comp, category.assoc, category.assoc, ht.fac,
1418
- ht.fac, binary_fan.mk_π_app_right, binary_fan.mk_π_app_right, comp_zero, zero_add,
1419
- binary_bicone.binary_fan_snd_to_cone, category.comp_id, category.id_comp] }
1420
- end
1411
+ is_binary_bilimit_of_total _ (by refine binary_fan.is_limit.hom_ext ht _ _; simp)
1421
1412
1422
1413
/-- We can turn any limit cone over a pair into a bilimit bicone. -/
1423
1414
def binary_bicone_is_bilimit_of_limit_cone_of_is_limit {X Y : C} {t : cone (pair X Y)}
@@ -1477,15 +1468,9 @@ def is_binary_bilimit_of_is_colimit {X Y : C} (t : binary_bicone X Y)
1477
1468
(ht : is_colimit t.to_cocone) : t.is_bilimit :=
1478
1469
is_binary_bilimit_of_total _
1479
1470
begin
1480
- refine binary_cofan.is_colimit.hom_ext ht _ _,
1481
- { rw [fst_of_is_colimit ht, snd_of_is_colimit ht, comp_add, ht.fac_assoc, ht.fac_assoc,
1482
- binary_cofan.mk_ι_app_left, binary_cofan.mk_ι_app_left,
1483
- binary_bicone.binary_cofan_inl_to_cocone, zero_comp, add_zero, category.id_comp t.inl,
1484
- category.comp_id t.inl] },
1485
- { rw [fst_of_is_colimit ht, snd_of_is_colimit ht, comp_add, ht.fac_assoc, ht.fac_assoc,
1486
- binary_cofan.mk_ι_app_right, binary_cofan.mk_ι_app_right,
1487
- binary_bicone.binary_cofan_inr_to_cocone, zero_comp, zero_add, category.comp_id t.inr,
1488
- category.id_comp t.inr] }
1471
+ refine binary_cofan.is_colimit.hom_ext ht _ _; simp,
1472
+ { rw [category.comp_id t.inl] },
1473
+ { rw [category.comp_id t.inr] }
1489
1474
end
1490
1475
1491
1476
/-- We can turn any colimit cocone over a pair into a bilimit bicone. -/
@@ -1565,10 +1550,10 @@ def binary_bicone_of_split_mono_of_cokernel {X Y : C} {f : X ⟶ Y} [split_mono
1565
1550
rw [split_epi_of_idempotent_of_is_colimit_cofork_section_,
1566
1551
is_colimit_cofork_of_cokernel_cofork_desc, is_cokernel_epi_comp_desc],
1567
1552
dsimp only [cokernel_cofork_of_cofork_of_π],
1568
- letI := epi_of_is_colimit_parallel_pair i,
1553
+ letI := epi_of_is_colimit_cofork i,
1569
1554
apply zero_of_epi_comp c.π,
1570
- simp only [sub_comp, category.comp_id, category.assoc, split_mono.id, is_colimit.fac_assoc ,
1571
- cofork.of_π_ι_app, category.id_comp, cofork.π_of_π ],
1555
+ simp only [sub_comp, comp_sub, category.comp_id, category.assoc, split_mono.id, sub_self ,
1556
+ cofork.is_colimit.π_comp_desc_assoc, cokernel_cofork.π_of_π, split_mono.id_assoc ],
1572
1557
apply sub_eq_zero_of_eq,
1573
1558
apply category.id_comp
1574
1559
end ,
@@ -1586,8 +1571,8 @@ begin
1586
1571
split_epi_of_idempotent_of_is_colimit_cofork_section_],
1587
1572
dsimp only [binary_bicone_of_split_mono_of_cokernel_X],
1588
1573
rw [is_colimit_cofork_of_cokernel_cofork_desc, is_cokernel_epi_comp_desc],
1589
- simp only [cofork.is_colimit.π_desc_of_π, cokernel_cofork_of_cofork_π,
1590
- cofork.π_of_π, binary_bicone_of_split_mono_of_cokernel_inl, add_sub_cancel'_right],
1574
+ simp only [binary_bicone_of_split_mono_of_cokernel_inl, cofork.is_colimit.π_comp_desc,
1575
+ cokernel_cofork_of_cofork_π, cofork.π_of_π, add_sub_cancel'_right]
1591
1576
end
1592
1577
1593
1578
/--
@@ -1616,10 +1601,10 @@ def binary_bicone_of_split_epi_of_kernel {X Y : C} {f : X ⟶ Y} [split_epi f]
1616
1601
rw [split_mono_of_idempotent_of_is_limit_fork_retraction,
1617
1602
is_limit_fork_of_kernel_fork_lift, is_kernel_comp_mono_lift],
1618
1603
dsimp only [kernel_fork_of_fork_ι],
1619
- letI := mono_of_is_limit_parallel_pair i,
1604
+ letI := mono_of_is_limit_fork i,
1620
1605
apply zero_of_comp_mono c.ι,
1621
- simp only [comp_sub, category.comp_id, category.assoc, sub_self, fork.ι_eq_app_zero ,
1622
- fork.is_limit.lift_of_ι_ι, fork.of_ι_π_app , split_epi.id_assoc]
1606
+ simp only [comp_sub, category.comp_id, category.assoc, sub_self, fork.is_limit.lift_comp_ι ,
1607
+ fork.ι_of_ι , split_epi.id_assoc]
1623
1608
end ,
1624
1609
inr_snd' := by simp }
1625
1610
@@ -1635,8 +1620,7 @@ begin
1635
1620
split_mono_of_idempotent_of_is_limit_fork_retraction],
1636
1621
dsimp only [binary_bicone_of_split_epi_of_kernel_X],
1637
1622
rw [is_limit_fork_of_kernel_fork_lift, is_kernel_comp_mono_lift],
1638
- simp only [fork.ι_eq_app_zero, kernel_fork.condition, comp_zero, zero_comp, eq_self_iff_true,
1639
- fork.is_limit.lift_of_ι_ι, kernel_fork_of_fork_ι, fork.of_ι_π_app, sub_add_cancel]
1623
+ simp only [fork.is_limit.lift_comp_ι, fork.ι_of_ι, kernel_fork_of_fork_ι, sub_add_cancel]
1640
1624
end
1641
1625
1642
1626
end
0 commit comments