@@ -5,7 +5,7 @@ Authors: Anne Baanen
5
5
-/
6
6
7
7
import field_theory.subfield
8
- import ring_theory.algebra_tower
8
+ import field_theory.tower
9
9
10
10
/-!
11
11
# Intermediate fields
@@ -42,6 +42,7 @@ A `subalgebra` is closed under all operations except `⁻¹`,
42
42
intermediate field, field extension
43
43
-/
44
44
45
+ open finite_dimensional
45
46
open_locale big_operators
46
47
47
48
variables (K L : Type *) [field K] [field L] [algebra K L]
@@ -286,4 +287,39 @@ instance has_lift2 {F : intermediate_field K L} :
286
287
287
288
end tower
288
289
290
+ section finite_dimensional
291
+
292
+ instance finite_dimensional_left [finite_dimensional K L] (F : intermediate_field K L) :
293
+ finite_dimensional K F :=
294
+ finite_dimensional.finite_dimensional_submodule F.to_subalgebra.to_submodule
295
+
296
+ instance finite_dimensional_right [finite_dimensional K L] (F : intermediate_field K L) :
297
+ finite_dimensional F L :=
298
+ right K F L
299
+
300
+ lemma eq_of_le_of_findim_le [finite_dimensional K L] {F E : intermediate_field K L} (h_le : F ≤ E)
301
+ (h_findim : findim K E ≤ findim K F) : F = E :=
302
+ intermediate_field.ext'_iff.mpr (submodule.ext'_iff.mp (eq_of_le_of_findim_le
303
+ (show F.to_subalgebra.to_submodule ≤ E.to_subalgebra.to_submodule, by exact h_le) h_findim))
304
+
305
+ lemma eq_of_le_of_findim_eq [finite_dimensional K L] {F E : intermediate_field K L} (h_le : F ≤ E)
306
+ (h_findim : findim K F = findim K E) : F = E :=
307
+ eq_of_le_of_findim_le h_le h_findim.ge
308
+
309
+ lemma eq_of_le_of_findim_le' [finite_dimensional K L] {F E : intermediate_field K L} (h_le : F ≤ E)
310
+ (h_findim : findim F L ≤ findim E L) : F = E :=
311
+ begin
312
+ apply eq_of_le_of_findim_le h_le,
313
+ have h1 := findim_mul_findim K F L,
314
+ have h2 := findim_mul_findim K E L,
315
+ have h3 : 0 < findim E L := findim_pos,
316
+ nlinarith,
317
+ end
318
+
319
+ lemma eq_of_le_of_findim_eq' [finite_dimensional K L] {F E : intermediate_field K L} (h_le : F ≤ E)
320
+ (h_findim : findim F L = findim E L) : F = E :=
321
+ eq_of_le_of_findim_le' h_le h_findim.le
322
+
323
+ end finite_dimensional
324
+
289
325
end intermediate_field
0 commit comments