Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 3ac609b

Browse files
committed
chore(topology/continuous_function/compact): relax typeclass assumptions for metric space structure on C(X, Y) (#8717)
1 parent 0d59511 commit 3ac609b

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

src/topology/continuous_function/compact.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,15 @@ open bounded_continuous_function
3131

3232
namespace continuous_map
3333

34-
variables: Type*) (β : Type*) [topological_space α] [compact_space α] [normed_group β]
34+
variablesβ μ : Type*) [topological_space α] [compact_space α] [normed_group β] [metric_space μ]
3535

3636
/--
3737
When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are
3838
equivalent to `C(α, 𝕜)`.
3939
-/
4040
@[simps]
41-
def equiv_bounded_of_compact : C(α, β) ≃ (α →ᵇ β) :=
42-
⟨mk_of_compact, forget_boundedness α β, λ f, by { ext, refl, }, λ f, by { ext, refl, }⟩
41+
def equiv_bounded_of_compact : C(α, μ) ≃ (α →ᵇ μ) :=
42+
⟨mk_of_compact, forget_boundedness α μ, λ f, by { ext, refl, }, λ f, by { ext, refl, }⟩
4343

4444
/--
4545
When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are
@@ -62,10 +62,10 @@ lemma add_equiv_bounded_of_compact_to_equiv :
6262
(add_equiv_bounded_of_compact α β).to_equiv = equiv_bounded_of_compact α β :=
6363
rfl
6464

65-
instance : metric_space C(α,β) :=
65+
instance : metric_space C(α,μ) :=
6666
metric_space.induced
67-
(equiv_bounded_of_compact α β)
68-
(equiv_bounded_of_compact α β).injective
67+
(equiv_bounded_of_compact α μ)
68+
(equiv_bounded_of_compact α μ).injective
6969
(by apply_instance)
7070

7171
section
@@ -106,9 +106,9 @@ isometric to `C(α, β)`.
106106
-/
107107
@[simps]
108108
def isometric_bounded_of_compact :
109-
C(α, β) ≃ᵢ (α →ᵇ β) :=
109+
C(α, μ) ≃ᵢ (α →ᵇ μ) :=
110110
{ isometry_to_fun := λ x y, rfl,
111-
to_equiv := equiv_bounded_of_compact α β }
111+
to_equiv := equiv_bounded_of_compact α μ }
112112

113113
-- TODO at some point we will need lemmas characterising this norm!
114114
-- At the moment the only way to reason about it is to transfer `f : C(α,β)` back to `α →ᵇ β`.

0 commit comments

Comments
 (0)