@@ -31,15 +31,15 @@ open bounded_continuous_function
31
31
32
32
namespace continuous_map
33
33
34
- variables (α : Type *) (β : Type *) [topological_space α] [compact_space α] [normed_group β]
34
+ variables (α β μ : Type *) [topological_space α] [compact_space α] [normed_group β] [metric_space μ ]
35
35
36
36
/--
37
37
When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are
38
38
equivalent to `C(α, 𝕜)`.
39
39
-/
40
40
@[simps]
41
- def equiv_bounded_of_compact : C(α, β ) ≃ (α →ᵇ β ) :=
42
- ⟨mk_of_compact, forget_boundedness α β , λ f, by { ext, refl, }, λ f, by { ext, refl, }⟩
41
+ def equiv_bounded_of_compact : C(α, μ ) ≃ (α →ᵇ μ ) :=
42
+ ⟨mk_of_compact, forget_boundedness α μ , λ f, by { ext, refl, }, λ f, by { ext, refl, }⟩
43
43
44
44
/--
45
45
When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are
@@ -62,10 +62,10 @@ lemma add_equiv_bounded_of_compact_to_equiv :
62
62
(add_equiv_bounded_of_compact α β).to_equiv = equiv_bounded_of_compact α β :=
63
63
rfl
64
64
65
- instance : metric_space C(α,β ) :=
65
+ instance : metric_space C(α,μ ) :=
66
66
metric_space.induced
67
- (equiv_bounded_of_compact α β )
68
- (equiv_bounded_of_compact α β ).injective
67
+ (equiv_bounded_of_compact α μ )
68
+ (equiv_bounded_of_compact α μ ).injective
69
69
(by apply_instance)
70
70
71
71
section
@@ -106,9 +106,9 @@ isometric to `C(α, β)`.
106
106
-/
107
107
@[simps]
108
108
def isometric_bounded_of_compact :
109
- C(α, β ) ≃ᵢ (α →ᵇ β ) :=
109
+ C(α, μ ) ≃ᵢ (α →ᵇ μ ) :=
110
110
{ isometry_to_fun := λ x y, rfl,
111
- to_equiv := equiv_bounded_of_compact α β }
111
+ to_equiv := equiv_bounded_of_compact α μ }
112
112
113
113
-- TODO at some point we will need lemmas characterising this norm!
114
114
-- At the moment the only way to reason about it is to transfer `f : C(α,β)` back to `α →ᵇ β`.
0 commit comments