This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +3
-3
lines changed Expand file tree Collapse file tree 2 files changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -100,7 +100,7 @@ section ring_hom
100
100
universes u v
101
101
variable {I : Type u}
102
102
103
- /-- Evaluation of functions into an indexed collection of monoids at a point is a monoid
103
+ /-- Evaluation of functions into an indexed collection of rings at a point is a ring
104
104
homomorphism. This is `function.eval` as a `ring_hom`. -/
105
105
@[simps]
106
106
def pi.eval_ring_hom (f : I → Type v) [Π i, non_assoc_semiring (f i)] (i : I) :
Original file line number Diff line number Diff line change @@ -120,14 +120,14 @@ variables [non_assoc_semiring R'] [non_assoc_semiring S'] [non_assoc_semiring T]
120
120
variables (f : R →+* R') (g : S →+* S')
121
121
122
122
/-- `prod.map` as a `ring_hom`. -/
123
- def prod_map : R × S →* R' × S' := (f.comp (fst R S)).prod (g.comp (snd R S))
123
+ def prod_map : R × S →+ * R' × S' := (f.comp (fst R S)).prod (g.comp (snd R S))
124
124
125
125
lemma prod_map_def : prod_map f g = (f.comp (fst R S)).prod (g.comp (snd R S)) := rfl
126
126
127
127
@[simp]
128
128
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl
129
129
130
- lemma prod_comp_prod_map (f : T →* R) (g : T →* S) (f' : R →* R') (g' : S →* S') :
130
+ lemma prod_comp_prod_map (f : T →+ * R) (g : T →+ * S) (f' : R →+ * R') (g' : S →+ * S') :
131
131
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
132
132
rfl
133
133
You can’t perform that action at this time.
0 commit comments