Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 3c20253

Browse files
committed
chore(algebra/ring/{pi, prod}): fix errors in ring_hom for pi and prod. (#13501)
Looks like some things were incorrectly changed when copied from the corresponding `monoid_hom` files.
1 parent b54591f commit 3c20253

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

src/algebra/ring/pi.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ section ring_hom
100100
universes u v
101101
variable {I : Type u}
102102

103-
/-- Evaluation of functions into an indexed collection of monoids at a point is a monoid
103+
/-- Evaluation of functions into an indexed collection of rings at a point is a ring
104104
homomorphism. This is `function.eval` as a `ring_hom`. -/
105105
@[simps]
106106
def pi.eval_ring_hom (f : I → Type v) [Π i, non_assoc_semiring (f i)] (i : I) :

src/algebra/ring/prod.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -120,14 +120,14 @@ variables [non_assoc_semiring R'] [non_assoc_semiring S'] [non_assoc_semiring T]
120120
variables (f : R →+* R') (g : S →+* S')
121121

122122
/-- `prod.map` as a `ring_hom`. -/
123-
def prod_map : R × S →* R' × S' := (f.comp (fst R S)).prod (g.comp (snd R S))
123+
def prod_map : R × S →+* R' × S' := (f.comp (fst R S)).prod (g.comp (snd R S))
124124

125125
lemma prod_map_def : prod_map f g = (f.comp (fst R S)).prod (g.comp (snd R S)) := rfl
126126

127127
@[simp]
128128
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl
129129

130-
lemma prod_comp_prod_map (f : T →* R) (g : T →* S) (f' : R →* R') (g' : S →* S') :
130+
lemma prod_comp_prod_map (f : T →+* R) (g : T →+* S) (f' : R →+* R') (g' : S →+* S') :
131131
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
132132
rfl
133133

0 commit comments

Comments
 (0)